11 research outputs found
An apprach to generate large and small leptonic mixing angles
We take up the point of view that Yukawa couplings can be either 0 or 1, and
the mass patterns of fermions are generated purely from the structure of the
Yukawa matrices. We utilize such neutrino as well as charged leptonic textures
which lead to (maximal) mixing angles of in each sector for relevant
transitions. The combined leptonic CKM mixing angles are
which lead to very small relevant to solar neutrino and LSND
experiments. We propose that on the other hand the absence of the charged
leptonic partner of the sterile neutrino maintains the angle from the
neutrino sector for the transition and hence
atmospheric neutrino anomaly is explained through maximal mixing
New Supersymmetric Contributions to
We calculate the electroweak-like one-loop supersymmetric contributions to
the rare and flavor-violating decay of the top quark into a charm quark and a
gauge boson: , with . We consider loops of both charginos
and down-like squarks (where we identify and correct an error in the
literature) and neutralinos and up-like squarks (which have not been calculated
before). We also account for left-right and generational squark mixing. Our
numerical results indicate that supersymmetric contributions to can be
upto 5 orders of magnitude larger than their Standard Model counterparts.
However, they still fall short of the sensitivity expected at the
next-generation top-quark factories.Comment: 13 pages, LaTex, 1 figure included. Final version to appear in
Physical Review D. Chargino contribution dealt with in greater detail. Minor
revisions in tex
SU(3) Mixing for Excited Mesons
The SU(3)-flavor symmetry breaking and the quark-antiquark annihilation
mechanism are taken into account for describing the singlet-octet mixing for
several nonets assigned by Particle Data Group(PDG). This task is approached
with the mass matrix formalism
The Comparative Osteology of the Petrotympanic Complex (Ear Region) of Extant Baleen Whales (Cetacea: Mysticeti)
Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti.The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex.This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history
Parity-violating vector-meson-exchange internucleon potential in a modified factorization approach
Remodelling of the vertebral axis during metamorphic shrinkage in the pearlfish
Body shortening was observed in the pearlfish Carapus homei during metamorphosis. The tenuis larva at first possessed a suite of osseous vertebral bodies of similar length. The reduction in both the number and size of vertebrae followed increasing decalcification, degeneration of organic tissue and shortening. This involved a complete degradation and disappearance of the caudal tip vertebrae, and there was a reduction in the size of most of the remaining vertebrae. The further development of the vertebrae began with ossification of the neural and haemal arches before that of the vertebral body. This second part of the development followed a gradient: a gradual decreases towards the caudal tip in the size of the vertebrae and their completeness. (C) 2004 The Fisheries Society of the British Isles
