174 research outputs found

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    A serum protein biomarker panel improves outcome prediction in human traumatic brain injury

    Get PDF
    Brain-enriched protein biomarkers of tissue fate are being introduced clinically to aid in traumatic brain injury (TBI) management. The aim of this study was to determine how concentrations of six different protein biomarkers, measured in samples collected during the first weeks after TBI, relate to injury severity and outcome. We included neuro-critical care TBI patients that were prospectively enrolled from 2007 to 2013, all having 1 to 3 blood samples drawn during the first two weeks. The biomarkers analyzed were S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), tau and neurofilament-Light (NF-L). Glasgow Outcome Score (GOS) was assessed at 12 months. In total, 172 patients were included. All serum markers were associated with injury severity as classified on computed tomography scans at admission. Almost all biomarkers outperformed other known outcome predictors with higher levels the first five days, correlating with unfavorable outcomes, and UCH-L1 (0.260 pseduo-R2) displaying the best discrimination in univariate analyses. After adjusting for acknowledged TBI outcome predictors, GFAP and NF-L added most independent information to predict favorable/unfavorable GOS, improving the model from 0.38 to 0.51 pseudo-R2. A correlation matrix indicated substantial co-variance, with the strongest correlation between UCH-L1, GFAP and tau (r=0.827 to 0.880). Additionally, the principal component analysis exhibited clustering of UCH-L1 and tau, as well as GFAP, S100B and NSE, which was separate from NF-L. In summary, a panel of several different protein biomarkers, all associated with injury severity, with different cellular origin and temporal trajectories, improve outcome prediction models

    Cortisol in hair measured in young adults - a biomarker of major life stressors?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress as a cause of illness has been firmly established. In public health and stress research a retrospective biomarker of extended stress would be an indispensible aid. The objective of this pilot study was to investigate whether concentrations of cortisol in hair correlate with perceived stress, experiences of serious life events, and perceived health in young adults.</p> <p>Methods</p> <p>Hair samples were cut from the posterior vertex area of (n = 99) university students who also answered a questionnaire covering experiences of serious life events, perceived Stress Scale and perceived health during the last three months. Cortisol was measured using a competitive radioimmunoassay in methanol extracts of hair samples frozen in liquid nitrogen and mechanically pulverised.</p> <p>Results</p> <p>Mean cortisol levels were significantly related to serious life events (p = 0.045), weakly negatively correlated to perceived stress (p = 0.025, r = -0.061) but nor affected by sex, coloured/permed hair, intake of pharmaceuticals or self-reported health. In a multiple regression model, only the indicator of serious life events had an independent (p = 0.041) explanation of increased levels of cortisol in hair. Out of four outliers with extremely high cortisol levels two could be contacted, both reported serious psychological problems.</p> <p>Conclusions</p> <p>These findings suggest that measurement of cortisol in hair could serve as a retrospective biomarker of increased cortisol production reflecting exposure to major life stressors and possibly extended psychological illness with important implications for research, clinical practice and public health. Experience of serious life events seems to be more important in raising cortisol levels in hair than perceived stress.</p

    The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review

    Full text link

    Anaerobic Waste Water Treatment in a Carrier Assisted Sludge Bed Reactor

    Full text link
    A 40 1 tank reactor, filled to 3 % (v·v−1) with a small size (5-25µm) carrier material and equipped with a mechanical mixer, was used to create a sludge bed system for anaerobic waste water treatment. Solids leaving the tank with the effluent were recycled to the tank from an external settler. Two different substrates were used, fodder molasses diluted with tap water and beet sugar factory waste water. Influent concentrations were 9.3 g COD·1−1 and 4-7 g COD·1−1 respectively, and treatment was performed at 35-37 °C. With the synthetic molasses waste water, an organic load of 5-6 kg COD·m−3·d−1 could be tolerated, with the sugar industry waste water 25 kg COD·m−3·d−1. The difference in loading capacity was ascribed to different types of sludges formed, the molasses waste water resulting in a much more bulky sludge and a lower attainable volatile suspended solids concentration. It was concluded that much care must be exercised before designing sludge bed systems for high loads with unhydrolyzed waste waters.</jats:p

    A systems approach evaluation of sludge management strategies: sludge management in Valparaíso and Aconcagua, Chile

    Full text link
    In the 5th Region, located in central Chile, infrastructure projects are being implemented in order to increase the capacity to treat and dispose of sewage. In order to analyse the sludge management alternatives the ORWARE model was used. The research project was divided in two stages: in the first stage, the sewage and sludge management strategies to be compared as well as the objectives were established. The management alternatives chosen were for chemical or biological treatment of sewage while for sludge the management alternatives were based on digestion, composting or lime stabilisation. The second stage included simulation and analysis of results. The main conclusions of the work were: if “lowest possible emissions” is the main objective of sewage treatment, biological treatment should be applied. Regarding pathogen reduction, both chemical precipitation and biological treatment attain an adequate reduction if the treated sewage is to be discharged to the sea. On the other hand, additional disinfection is needed in the case of discharge to rivers. Control at source should be stressed to avoid heavy metals and toxic organic compounds in the sludge.</jats:p

    Technology assessment of thermal treatment technologies using ORWARE. Energy Conversion and Management 46:797-819 Ayres R and Ayres L.W

    No full text
    Abstract A technology assessment of thermal treatment technologies for wastes was performed in the form of scenarios of chains of technologies. The Swedish assessment tool, ORWARE, was used for the assessment. The scenarios of chains of thermal technologies assessed were gasification with catalytic combustion, gasification with flame combustion, incineration and landfilling. The landfilling scenario was used as a reference for comparison. The technologies were assessed from ecological and economic points of view. The results are presented in terms of global warming potential, acidification potential, eutrophication potential, consumption of primary energy carriers and welfare costs. From the simulations, gasification followed by catalytic combustion with energy recovery in a combined cycle appeared to be the most competitive technology from an ecological point of view. On the other hand, this alternative was more expensive than incineration. A sensitivity analysis was done regarding electricity prices to show which technology wins at what value of the unit price of electricity (SEK/kW h). Within this study, it was possible to make a comparison both between a combined cycle and a Rankine cycle (a system pair) and at the same time between flame combustion and catalytic combustion (a technology pair). To use gasification just as a treatment technology is not more appealing than incineration, but the possibility of combining gasification with a combined cycle is attractive in terms of electricity production. This research was done in connection with an empirical R&amp;D work on both gasification of waste and catalytic combustion of the gasified waste at the Division of Chemical Technology, Royal Institute of Technology (KTH), Sweden
    corecore