2,866 research outputs found
Knowledge-based Model Building with KONWERK
Modeling a real world optimization problem in a form which can be processed by a machine (computer) is usually a very difficult and complex task. Therefore, building and verifying the model is often the most time consuming part of the whole process of solving a real world problem using methods of Operations Research. Software tools, which integrate representation methods developed in the field of Artificial Intelligence (AI) and methods of OR, can facilitate and speed up the process of model development.
The paper introduces the idea of knowledge based modeling as a model development and representation technique facilitating the complex process of model building. We describe the KONWERK tool-box which combines hierarchical structured knowledge representation and object oriented methodology thus providing a framework for model building and application of different optimization methods. We want the reader to form an idea of the methodology of model development and knowledge representation with KONWERK and to understand the hierarchical structure of the knowledge base.
The model of the Nitra River Case is used to describe and explain the modeling and knowledge representation with KONWERK. A given multicriteria model of the Nitra River Case was reimplemented using KONWERK within about three weeks and later enlarged by implementation of additional fairness criteria
Charge and momentum transfer in supercooled melts: Why should their relaxation times differ?
The steady state values of the viscosity and the intrinsic ionic-conductivity
of quenched melts are computed, in terms of independently measurable
quantities. The frequency dependence of the ac dielectric response is
estimated. The discrepancy between the corresponding characteristic relaxation
times is only apparent; it does not imply distinct mechanisms, but stems from
the intrinsic barrier distribution for -relaxation in supercooled
fluids and glasses. This type of intrinsic ``decoupling'' is argued not to
exceed four orders in magnitude, for known glassformers. We explain the origin
of the discrepancy between the stretching exponent , as extracted from
and the dielectric modulus data. The actual width of the
barrier distribution always grows with lowering the temperature. The contrary
is an artifact of the large contribution of the dc-conductivity component to
the modulus data. The methodology allows one to single out other contributions
to the conductivity, as in ``superionic'' liquids or when charge carriers are
delocalized, implying that in those systems, charge transfer does not require
structural reconfiguration.Comment: submitted to J Chem Phy
Reaktivität und Habituation während der Nahrungsmittelkonfrontation bei Frauen mit Binge Eating Disorder
Simple Lattice-Models of Ion Conduction: Counter Ion Model vs. Random Energy Model
The role of Coulomb interaction between the mobile particles in ionic
conductors is still under debate. To clarify this aspect we perform Monte Carlo
simulations on two simple lattice models (Counter Ion Model and Random Energy
Model) which contain Coulomb interaction between the positively charged mobile
particles, moving on a static disordered energy landscape. We find that the
nature of static disorder plays an important role if one wishes to explore the
impact of Coulomb interaction on the microscopic dynamics. This Coulomb type
interaction impedes the dynamics in the Random Energy Model, but enhances
dynamics in the Counter Ion Model in the relevant parameter range.Comment: To be published in Phys. Rev.
Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the Chemistry Climate Model ECHAM5/MESSy1
International audienceThe chemistry climate model ECHAM5/MESSy1 (E5/M1) in a setup extending from the surface to 80 km with a vertical resolution of about 600 m near the tropopause with nudged tropospheric meteorology allows a direct comparison with satellite data of chemical species at the same time and location. Here we present results out of a transient 10 years simulation for the period of the Antarctic vortex split in September 2002, where data of MIPAS on the ENVISAT-satellite are available. For the first time this satellite instrument opens the opportunity, to evaluate all stratospheric nitrogen containing species simultaneously with a good global coverage, including the source gas N2O which allows an estimate for NOx-production in the stratosphere. We show correlations between simulated and observed species in the altitude region between 10 and 50 hpa for different latitude belts, together with the Probability Density Functions (PDFs) of model results and observations. This is supplemented by global charts on pressure levels showing the satellite data and the simulated data sampled at the same time and location. We demonstrate that the model in most cases captures the partitioning in the nitrogen family, the diurnal cycles and the spatial distribution within experimental uncertainty. There appears to be, however, a problem to reproduce the observed nighttime partitioning between N2O5 and NO2 in the middle stratosphere
Recommended from our members
A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU
A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century
Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \phi^4_2
We perform a Monte Carlo simulation calculation of the critical coupling
constant for the continuum {\lambda \over 4} \phi^4_2 theory. The critical
coupling constant we obtain is [{\lambda \over \mu^2}]_crit=10.24(3).Comment: 11 pages, 4 figures, LaTe
A Relativistic Separable Potential to Describe Pairing in Nuclear Matter
Using the Dirac-Hartree-Fock-Bogoliubov approximation to study nuclear
pairing, we have found the short-range correlations of the Dirac S
pairing fields to be essentially identical to those of the two-nucleon virtual
state at all values of the baryon density. We make use of this fact to develop
a relativistic separable potential that correctly describes the pairing fields.Comment: 17 pages, 4 eps-figure
- …
