404 research outputs found

    In vivo application and dynamics of lactic acid bacteria for the four-season production of Vastedda-like cheese.

    Get PDF
    Twelve lactic acid bacteria (LAB), previously selected in vitro (Gaglio et al., 2014), were evaluated in situ for their potential to act as starter cultures for the continuous four-season production of Vastedda-like cheese, madewith raw ewes' milk. The strains belonged to Lactobacillus delbrueckii, Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides subsp. mesenteroides and Streptococcus thermophilus. LABwere first inoculated in multiple-strain combinations on the basis of their optimal growth temperatures in three process conditions which differed for milk treatment and medium for strain development: process 1, growth of strains in the optimal synthetic media and pasteurised milk; process 2, growth of strains in whey based medium (WBM) and pasteurised milk; and process 3, growth of strains in WBM and raw milk. The strains that acidified the curds in short time, as shown by a pH drop, were all mesophilic and were then tested in a single inoculum through process 3. Randomly amplified polymorphic DNA (RAPD)-PCR analysis applied to the colonies isolated from the highest dilutions of samples confirmed the dominance of the added strains after curd acidification, stretching and storage. After 15 days of refrigerated storage, the decrease in pH values showed an activity of the mesophilic strains at low temperatures, but only Lc. lactis subsp. cremoris PON153, Ln. mesenteroides subsp. mesenteroides PON259 and PON559 increased their number during the 15 days at 7 \ub0C. A sensory evaluation indicated that the cheeses obtained by applying protocol 3 and by inoculation with lactococci are the most similar to the protected denomination of origin (PDO) cheese and received the best scores by the judges. Thus, the experimental cheeses obtained with raw milk and inoculated with single and multiple combinations of lactococci were subjected to the analysis of the volatile organic compounds (VOCs) carried out by a headspace solid phase microextraction (SPME) technique coupled with gas chromatography with mass spectrometric detection (GC/MS). The dominance of lactococci over thermophilic LAB of raw milk was verified during summer production and, based on the combination of VOC profiles and sensory evaluation of the final cheeses, the multi-strain Lactococcus culture resulted in the most suitable starter preparation for the full-year production of Vastedda-like cheese

    Valorization of indigenous dairy cattle breed through salami production

    Get PDF
    The aim of the research was to produce salami manufactured with meat of three different commercial categories of bovine breed: cow on retirement, beef and young bull. A total of six experimental productions, at small-scale plant, were carried out with and without starter culture inoculums. The evolution of physico-chemical parameters in all trials followed the trend already registered for other fermented meat products. Several LAB species were found during process with different levels of species diversity and frequency of isolation among inoculated (mainly Pediococcus pentosaceus and Staphylococcus xylosus) and uninoculated (mainly Enterococcus devriesei, Lactobacillus curvatus and Lactobacillus sakei) trials. Enterobacteriaceae were found at very low levels during the entire ripening period and no pathogenic bacteria were found in any samples. The multivariate analysis showed that starter inoculums and meat affected significantly the physico-chemical and the microbiological composition of salami. The sensory analysis evidenced the highest overall acceptability was displayed by salami produced with meat from cow on retirement

    A 3D Human Posture Approach for Activity Recognition Based on Depth Camera

    Get PDF
    Human activity recognition plays an important role in the context of Ambient Assisted Living (AAL), providing useful tools to improve people quality of life. This work presents an activity recognition algorithm based on the extraction of skeleton joints from a depth camera. The system describes an activity using a set of few and basic postures extracted by means of the X-means clustering algorithm. A multi-class Support Vector Machine, trained with the Sequential Minimal Optimization is employed to perform the classification. The system is evaluated on two public datasets for activity recognition which have different skeleton models, the CAD-60 with 15 joints and the TST with 25 joints. The proposed approach achieves precision/recall performances of 99.8 % on CAD-60 and 97.2 %/91.7 % on TST. The results are promising for an applied use in the context of AAL

    Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities.

    Get PDF
    The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression.We thank T. Jacks (Kras^LSL-G12D), A. Berns (p53^Fx) and the NIH Mouse repository for mice. We also thank Sam Kleeman and Patricia Ogger for assistance with redox cell profiling and cell viability assays, respectively. We are very thankful to CRUK CI BRU staff for support with in vivo work and all the members of the Martins lab for critical comments and advice. This work was supported by the Medical Research Council.This is the author accepted manuscript. The final version is available at http://www.nature.com/nature/journal/v531/n7592/full/nature16967.html

    Co-evolution, opportunity seeking and institutional change: Entrepreneurship and the Indian telecommunications industry 1923-2009

    Get PDF
    "This is an Author's Original Manuscript of an article submitted for consideration in Business History [copyright Taylor & Francis]; Business History is available online at http://www.tandfonline.com/." 10.1080/00076791.2012.687538In this paper, we demonstrate the importance for entrepreneurship of historical contexts and processes, and the co-evolution of institutions, practices, discourses and cultural norms. Drawing on discourse and institutional theories, we develop a model of the entrepreneurial field, and apply this in analysing the rise to global prominence of the Indian telecommunications industry. We draw on entrepreneurial life histories to show how various discourses and discursive processes ultimately worked to generate change and the creation of new business opportunities. We propose that entrepreneurship involves more than individual acts of business creation, but also implies collective endeavours to shape the future direction of the entrepreneurial field

    A Thorough Investigation of the Microbiological, Physicochemical, and Sensory Properties of Ewe’s Yoghurt Fermented by a Selected Multi-Strain Starter Culture

    Get PDF
    This work was carried out with the aim to investigate the microbiological, physicochemical, and sensory properties of an innovative yoghurt produced from ewe’s milk. Experimental yoghurt productions were performed with a commercial freeze-dried starter preparation and a natural milk starter culture (NMSC) of Streptococcus thermophilus and Lactobacillus delbrueckii. The two yoghurts did not differ for colour parameters, showing an average value of lightness, redness, and yellowness of 94.99, −3.74, and 9.37, respectively. The yoghurt produced using the NMSC as a fermenting agent was characterised by a significantly lower fat percentage and a higher antioxidant potential than commercial starters. Microbiological analysis confirmed the safety of the final product and a level of living lactic acid bacteria of 108 CFU/g. Sensory analysis revealed some differences among yoghurts regarding unpleasant odour, homogeneity, and persistence in the mouth, but the yoghurt processed with NMSC was more appreciated. Thus, the production of ewe’s yoghurt fermented by a selected multi-strain starter culture represents an interesting strategy to enlarge the functional ovine dairy product portfolio

    Improvement of oxidative status, milk and cheese production, and food sustainability indexes by addition of durum wheat bran to dairy cows’ diet

    Get PDF
    Simple Summary In the near future, the expected increase in world population will enhance feed versus food competition between animals and humans to face the increasing demand by humans. For this reason, it is of paramount importance to feed ruminants with sources alternative to those representing themselves foods for humans. Durum wheat bran (DWB), similar to other by-products of the agri-food industry, can meet this need, its fiber content is high and represents also a remarkable source of phenolic acids, especially ferulic acid. This compound exerts antioxidant properties improving the health status of animals, and allows the production of functional foods more and more requested by consumers. Accordingly, this experiment demonstrated the suitability of using DWB for dairy cows feeding, because it led to clear advantages in terms of oxidative status of animals, quality of dairy products, and feeding costs. Furthermore, DWB improved the human-edible feed conversion efficiency reducing the use of human-edible feed. Durum wheat bran (DWB) is a by-product mostly used in feeding ruminants, contributing to decrease in the utilization of feeds suitable as foods for human consumption, thus improving the sustainability of livestock production. However, the potential benefits of DWB, due to its content in phenolic acids, mainly consisting of ferulic acid with antioxidant properties, have not been well clarified yet. Accordingly, in this experiment, 36 lactating cows divided into three groups received, over a period of 100 days, one of three concentrates including DWB at 0% (DWB0), 10% (DWB10), or 20% (DWB20). The concentrates were formulated to be isoproteic and isoenergetic and, to balance the higher fiber content of the concentrates with DWB, the hay in the diets was slightly reduced. During the trial, the group feed intake and the individual milk production were monitored, and cheese was made with bulk milk from each group. Milk yield and microbiological characteristics of milk and cheese were similar among groups, indicating no DWB effect on cows performance and fermentation process. Milk from DWB20 group resulted slightly higher in casein and curd firmness (a(2r)). In cows fed DWB, the higher polyphenol intake was responsible for higher blood contents of these bioactive compounds, that seemed to have contributed in reducing the level of reactive oxygen metabolites (ROMs), which were higher in DWB0 cows. DWB20 cheeses showed a higher polyphenol content, lower number of peroxides, and higher antioxidant capacity than DWB0 cheeses. DWB20 and DWB10 diets resulted less expensive. In addition, the DWB20 group showed the best indexes heFCE (human edible feed conversion efficiency = milk/human edible feed) and NFP (net food production = milk - human edible food), expressed as crude protein or gross energy. In conclusion, the DWB fed to dairy cows at 12% of diet dry matter (DM) can lead to benefits, such as the improvement of oxidative status of cows, milk quality, shelf-life, and functional properties of cheese, and might contribute to reduce the feeding cost and limit the human-animal competition for feeding sources
    corecore