178 research outputs found
Optimal Pacing for Running 400 m and 800 m Track Races
Physicists seeking to understand complex biological systems often find it
rewarding to create simple "toy models" that reproduce system behavior. Here a
toy model is used to understand a puzzling phenomenon from the sport of track
and field. Races are almost always won, and records set, in 400 m and 800 m
running events by people who run the first half of the race faster than the
second half, which is not true of shorter races, nor of longer. There is
general agreement that performance in the 400 m and 800 m is limited somehow by
the amount of anaerobic metabolism that can be tolerated in the working muscles
in the legs. A toy model of anaerobic metabolism is presented, from which an
optimal pacing strategy is analytically calculated via the Euler-Lagrange
equation. This optimal strategy is then modified to account for the fact that
the runner starts the race from rest; this modification is shown to result in
the best possible outcome by use of an elementary variational technique that
supplements what is found in undergraduate textbooks. The toy model reproduces
the pacing strategies of elite 400 m and 800 m runners better than existing
models do. The toy model also gives some insight into training strategies that
improve performance.Comment: 14 pages, 4 figures, submitted to the American Journal of Physic
Effect of combined uphill-downhill sprint training on kinematics and maximum running speed in experienced sprinters
This study examined the effects of sprint running training on sloping surfaces (3°) in experienced sprinters using selected kinematic variables. Twelve experienced sprinters were randomly allocated to two training groups (combined uphill–downhill and horizontal). Pre- and post-training tests were performed to examine the effects of six weeks of training on maximum running speed, step rate, step length, step time, contact time, braking and propulsive phase of contact time, flight time and selected postural characteristics during a step cycle in the final steps of a 35m sprint test. In the combined uphill–downhill training group, maximum running speed was substantially greater (from 9.08 ± 0.90 m s-1 to 9.51 ± 0.62 m s-1; p <0.05) after training by 4.8%; step rate, contact time, step time and concentric phase was not modified. There were no significant changes in maximal speed or sprint kinematics in the horizontal training group. Overall, the posture characteristics did not change with training. The combined uphill–downhill training method was substantially more effective in improving the maximum running speed in experienced sprinters than a traditional horizontal training method
Modeling the integration of bacterial rRNA fragments into the human cancer genome
BACKGROUND: Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5′-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. RESULTS: Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. CONCLUSIONS: The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-0982-0) contains supplementary material, which is available to authorized users
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available
A unified data representation theory for network visualization, ordering and coarse-graining
Representation of large data sets became a key question of many scientific
disciplines in the last decade. Several approaches for network visualization,
data ordering and coarse-graining accomplished this goal. However, there was no
underlying theoretical framework linking these problems. Here we show an
elegant, information theoretic data representation approach as a unified
solution of network visualization, data ordering and coarse-graining. The
optimal representation is the hardest to distinguish from the original data
matrix, measured by the relative entropy. The representation of network nodes
as probability distributions provides an efficient visualization method and, in
one dimension, an ordering of network nodes and edges. Coarse-grained
representations of the input network enable both efficient data compression and
hierarchical visualization to achieve high quality representations of larger
data sets. Our unified data representation theory will help the analysis of
extensive data sets, by revealing the large-scale structure of complex networks
in a comprehensible form.Comment: 13 pages, 5 figure
Current understanding of the human microbiome
Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1
A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running
Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs
Relationships between the vaginal microbiota and genitourinary syndrome of menopause symptoms in postmenopausal women: the Study of Women's Health Across the Nation
ObjectiveTo describe vaginal microbiota classified by community state types (CST) in a diverse cohort of postmenopausal women and evaluate relationships among genitourinary syndrome of menopause (GSM) symptoms (vaginal dryness, vulvovaginal irritation, sexual pain, dysuria, urinary urgency), CSTs, estrogen, vaginal maturation index (VMI), and vaginal pH.MethodsIn the Study of Women's Health Across the Nation, 1,320 women aged 60.4 to 72.5 years self-collected (2015-2017) vaginal samples analyzed for microbiota composition and structure (CSTs) using 16S rRNA gene amplicon sequencing, VMI, and pH. GSM symptoms were collected with self-administered questionnaires; interviewers elicited estrogen use and measured body mass index. Serum E2 and E1 were measured using high-performance liquid chromatography. We analyzed data using Pearson χ2 tests, analysis of variance, Kruskal-Wallis tests, and binomial logistic regression.ResultsThe most frequently occurring CST was low Lactobacillus species IV-C (49.8%); 36.4% of women had CSTs dominated by Lactobacillus species. More than half of the women with vaginal atrophy biomarkers (VMI <50 and pH >5) had CST IV-C0, whereas women using estrogen or with higher E1 and E2 levels had a higher prevalence of Lactobacillus crispatus -dominated CST I ( P values < 0.001). Sexual pain was associated with atrophy biomarkers and independently associated with Streptococcus species-dominated CST IV-C1 (odds ratio, 2.26; 95% confidence intervals, 1.20-4.23). For all other GSM symptoms, we found no consistent associations with E1 or E2 levels, atrophy biomarkers, or any CST.ConclusionsAlthough close relationships exist among estrogen, CSTs, VMI, and pH, sexual pain was the only GSM symptom associated with the structure of vaginal microbiota and atrophy biomarkers
Association of Fecal Microbial Diversity and Taxonomy with Selected Enzymatic Functions
Few microbial functions have been compared to a comprehensive survey of the human fecal microbiome. We evaluated determinants of fecal microbial β-glucuronidase and β-glucosidase activities, focusing especially on associations with microbial alpha and beta diversity and taxonomy. We enrolled 51 healthy volunteers (26 female, mean age 39) who provided questionnaire data and multiple aliquots of a stool, from which proteins were extracted to quantify β-glucuronidase and β-glucosidase activities, and DNA was extracted to amplify and pyrosequence 16S rRNA gene sequences to classify and quantify microbiome diversity and taxonomy. Fecal β-glucuronidase was elevated with weight loss of at least 5 lb. (P = 0.03), whereas β-glucosidase was marginally reduced in the four vegetarians (P = 0.06). Both enzymes were correlated directly with microbiome richness and alpha diversity measures, directly with the abundance of four Firmicutes Clostridia genera, and inversely with the abundance of two other genera (Firmicutes Lactobacillales Streptococcus and Bacteroidetes Rikenellaceae Alistipes) (all P = 0.05–0.0001). Beta diversity reflected the taxonomic associations. These observations suggest that these enzymatic functions are performed by particular taxa and that diversity indices may serve as surrogates of bacterial functions. Independent validation and deeper understanding of these associations are needed, particularly to characterize functions and pathways that may be amenable to manipulation
Human Population Differentiation Is Strongly Correlated with Local Recombination Rate
Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and FST has a qualitatively different relationship for FST between African and non-African populations and for FST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history
- …
