415 research outputs found

    Amplitude `Higgs' mode in 2H-NbSe2 Superconductor

    Get PDF
    We report experimental evidences for the observation of the superconducting amplitude mode, so-called `Higgs' mode in the charge density wave superconductor 2H-NbSe2 using Raman scattering. By comparing 2H-NbSe2 and its iso-structural partner 2H-NbS2 which shows superconductivity but lacks the charge density wave order, we demonstrate that the superconducting mode in 2H-NbSe2 owes its spectral weight to the presence of the coexisting charge density wave order. In addition, temperature dependent measurements in 2H-NbSe2 show a full spectral weight transfer from the charge density wave mode to the superconducting mode upon entering the superconducting phase. Both observations are fully consistent with a superconducting amplitude mode or Higgs mode.Comment: Accepted for publication in Phys. Rev. B Rapid Com. 5 pages with 3 figure

    Unconventional high-energy-state contribution to the Cooper pairing in under-doped copper-oxide superconductor HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta}

    Full text link
    We study the temperature-dependent electronic B1g Raman response of a slightly under-doped single crystal HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta} with a superconducting critical temperature Tc=122 K. Our main finding is that the superconducting pair-breaking peak is associated with a dip on its higher-energy side, disappearing together at Tc. This result hints at an unconventional pairing mechanism, whereas spectral weight lost in the dip is transferred to the pair-breaking peak at lower energies. This conclusion is supported by cellular dynamical mean-field theory on the Hubbard model, which is able to reproduce all the main features of the B1g Raman response and explain the peak-dip behavior in terms of a nontrivial relationship between the superconducting and the pseudo gaps.Comment: 7 pages 4 figure

    Transition from Free to Interacting Composite Fermions away from ν\nu=1/3

    Get PDF
    Spin excitations from a partially populated composite fermion level are studied above and below ν=1/3\nu=1/3. In the range 2/7<ν<2/52/7<\nu<2/5 the experiments uncover significant departures from the non-interacting composite fermion picture that demonstrate the increasing impact of interactions as quasiparticle Landau levels are filled. The observed onset of a transition from free to interacting composite fermions could be linked to condensation into the higher order states suggested by transport experiments and numerical evaluations performed in the same filling factor range.Comment: 4 pages, 5 figures, to appear in PR

    Unambiguous connection between the Fermi surface topology and the pseudogap in Bi2_{2}Sr2_2CaCu2_2O8+d_{8+d}

    Full text link
    We study the behavior of the pseudogap in overdoped Bi2_{2}Sr2_2CaCu2_2O8+d_{8+d} by electronic Raman scattering (ERS) and angle-resolved photoemission spectroscopy (ARPES) on the same single crystals. Using both techniques we find that, unlike the superconducting gap, the pseudogap related to the anti-bonding band vanishes above the critical doping pc_c = 0.22. Concomitantly, we show from ARPES measurements that the Fermi surface of the anti-bonding band is hole-like below pc and becomes electron-like above pc_c. This reveals that the appearance of the pseudogap depends on the Fermi surface topology in Bi2_{2}Sr2_2CaCu2_2O8+d_{8+d} , and more generally, puts strong constraint on theories of the pseudogap phase.Comment: 6 pages , 3 figure

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling

    Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization

    Full text link
    We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0 < nu < 1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used as a probe of the spin polarization of the ground state of the two-dimensional electron system (2DES). We find that at nu = 1/3 the 2DES is fully spin-polarized. Increasing the filling factor results in a gradual depolarization, with a sharp minimum in the dichroism near nu = 2/3. We find that in the range 0.5 < nu < 0.85 the 2DES remains partially polarized for the broad range of magnetic fields from 2.75 to 11 Tesla. This is consistent with the presence of a mixture of polarized and depolarized regions.Comment: 4 pages, 4 figures (Fig 4 is in color

    Goldstone Mode Relaxation in a Quantum Hall Ferromagnet due to Hyperfine Interaction with Nuclei

    Full text link
    Spin relaxation in quantum Hall ferromagnet regimes is studied. As the initial non-equilibrium state, a coherent deviation of the spin system from the B{\vec B} direction is considered and the breakdown of this Goldstone-mode state due to hyperfine coupling to nuclei is analyzed. The relaxation occurring non-exponentially with time is studied in terms of annihilation processes in the "Goldstone condensate" formed by "zero spin excitons". The relaxation rate is calculated analytically even if the initial deviation is not small. This relaxation channel competes with the relaxation mechanisms due to spin-orbit coupling, and at strong magnetic fields it becomes dominating.Comment: 8 page

    Bosons in high temperature superconductors: an experimental survey

    Full text link
    We review a number of experimental techniques that are beginning to reveal fine details of the bosonic spectrum \alpha^2F(\Omega) that dominates the interaction between the quasiparticles in high temperature superconductors. Angle-resolved photo emission (ARPES) shows kinks in electronic dispersion curves at characteristic energies that agree with similar structures in the optical conductivity and tunnelling spectra. Each technique has its advantages. ARPES is momentum resolved and offers independent measurements of the real and imaginary part of the contribution of the bosons to the self energy of the quasiparticles. The optical conductivity can be used on a larger variety of materials and with the use of maximum entropy techniques reveals rich details of the spectra including their evolution with temperature and doping. Scanning tunnelling spectroscopy offers spacial resolution on the unit cell level. We find that together the various spectroscopies, including recent Raman results, are pointing to a unified picture of a broad spectrum of bosonic excitations at high temperature which evolves, as the temperature is lowered into a peak in the 30 to 60 meV region and a featureless high frequency background in most of the materials studied. This behaviour is consistent with the spectrum of spin fluctuations as measured by magnetic neutron scattering. However, there is evidence for a phonon contribution to the bosonic spectrum as well.Comment: 71 pages, 52 figure
    corecore