159 research outputs found

    An Invariant Theory of Spacelike Surfaces in the Four-dimensional Minkowski Space

    Full text link
    We consider spacelike surfaces in the four-dimensional Minkowski space and introduce geometrically an invariant linear map of Weingarten-type in the tangent plane at any point of the surface under consideration. This allows us to introduce principal lines and an invariant moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of spacelike surfaces in the four-dimensional Minkowski space, determined by conditions on their invariants, can be interpreted in terms of the properties of the two geometric figures: the tangent indicatrix, and the normal curvature ellipse. We apply our theory to a class of spacelike general rotational surfaces.Comment: 23 pages; to appear in Mediterr. J. Math., Vol. 9 (2012

    An Extension of the Character Ring of sl(3) and Its Quantisation

    Full text link
    We construct a commutative ring with identity which extends the ring of characters of finite dimensional representations of sl(3). It is generated by characters with values in the group ring Z[W~]Z[\tilde{W}] of the extended affine Weyl group of sl^(3)k\hat{sl}(3)_k at k∉Qk\not \in Q. The `quantised' version at rational level k+3=3/pk+3=3/p realises the fusion rules of a WZW conformal field theory based on admissible representations of sl^(3)k\hat{sl}(3)_k.Comment: contains two TeX files: main file using harvmac.tex, amssym.def, amssym.tex, 35p.; file with figures using XY-pic package, 4p; v2: minor corrections, Note adde

    Special biconformal changes of K\"ahler surface metrics

    Full text link
    The term "special biconformal change" refers, basically, to the situation where a given nontrivial real-holomorphic vector field on a complex manifold is a gradient relative to two K\"ahler metrics, and, simultaneously, an eigenvector of one of the metrics treated, with the aid of the other, as an endomorphism of the tangent bundle. A special biconformal change is called nontrivial if the two metrics are not each other's constant multiples. For instance, according to a 1995 result of LeBrun, a nontrivial special biconformal change exists for the conformally-Einstein K\"ahler metric on the two-point blow-up of the complex projective plane, recently discovered by Chen, LeBrun and Weber; the real-holomorphic vector field involved is the gradient of its scalar curvature. The present paper establishes the existence of nontrivial special biconformal changes for some canonical metrics on Del Pezzo surfaces, viz. K\"ahler-Einstein metrics (when a nontrivial holomorphic vector field exists), non-Einstein K\"ahler-Ricci solitons, and K\"ahler metrics admitting nonconstant Killing potentials with geodesic gradients.Comment: 16 page

    Parafermionic algebras, their modules and cohomologies

    Full text link
    We explore the Fock spaces of the parafermionic algebra introduced by H.S. Green. Each parafermionic Fock space allows for a free minimal resolution by graded modules of the graded 2-step nilpotent subalgebra of the parafermionic creation operators. Such a free resolution is constructed with the help of a classical Kostant's theorem computing Lie algebra cohomologies of the nilpotent subalgebra with values in the parafermionic Fock space. The Euler-Poincar\'e characteristics of the parafermionic Fock space free resolution yields some interesting identities between Schur polynomials. Finally we briefly comment on parabosonic and general parastatistics Fock spaces.Comment: 10 pages, talk presented at the International Workshop "Lie theory and its applications in Physics" (17-23 June 2013, Varna, Bulgaria

    On Structure Constants of sl(2)sl(2) Theories

    Full text link
    Structure constants of minimal conformal theories are reconsidered. It is shown that {\it ratios} of structure constants of spin zero fields of a non-diagonal theory over the same evaluated in the diagonal theory are given by a simple expression in terms of the components of the eigenvectors of the adjacency matrix of the corresponding Dynkin diagram. This is proved by inspection, which leads us to carefully determine the {\it signs} of the structure constants that had not all appeared in the former works on the subject. We also present a proof relying on the consideration of lattice correlation functions and speculate on the extension of these identities to more complicated theories.Comment: 32 page

    New Solutions of the Yang-Baxter Equation Based on Root of 1 Representations of the Para-Bose Superalgebra Uq_q[osp(1/2)]

    Full text link
    New solutions of the quantum Yang-Baxter equation, depending in general on three arbitrary parameters, are written down. They are based on the root of unity representations of the quantum orthosymplectic superalgebra \\U, which were found recently. Representations of the braid group BNB_N are defined within any NthN^{th} tensorial power of root of 1 \\U modules.Comment: 11 pages, PlainTe

    The quantum superalgebra Uq[osp(1/2n)]U_q[osp(1/2n)]: deformed para-Bose operators and root of unity representations

    Full text link
    We recall the relation between the Lie superalgebra osp(1/2n)osp(1/2n) and para-Bose operators. The quantum superalgebra Uq[osp(1/2n)]U_q[osp(1/2n)], defined as usual in terms of its Chevalley generators, is shown to be isomorphic to an associative algebra generated by so-called pre-oscillator operators satisfying a number of relations. From these relations, and the analogue with the non-deformed case, one can interpret these pre-oscillator operators as deformed para-Bose operators. Some consequences for Uq[osp(1/2n)]U_q[osp(1/2n)] (Cartan-Weyl basis, Poincar\'e-Birkhoff-Witt basis) and its Hopf subalgebra Uq[gl(n)]U_q[gl(n)] are pointed out. Finally, using a realization in terms of ``qq-commuting'' qq-bosons, we construct an irreducible finite-dimensional unitary Fock representation of Uq[osp(1/2n)]U_q[osp(1/2n)] and its decomposition in terms of Uq[gl(n)]U_q[gl(n)] representations when qq is a root of unity.Comment: 15 pages, LaTeX (latex twice), no figure

    Abstract kinetic equations with positive collision operators

    Full text link
    We consider "forward-backward" parabolic equations in the abstract form Jdψ/dx+Lψ=0Jd \psi / d x + L \psi = 0, 0<x<τ 0< x < \tau \leq \infty, where JJ and LL are operators in a Hilbert space HH such that J=J=J1J=J^*=J^{-1}, L=L0L=L^* \geq 0, and kerL=0\ker L = 0. The following theorem is proved: if the operator B=JLB=JL is similar to a self-adjoint operator, then associated half-range boundary problems have unique solutions. We apply this theorem to corresponding nonhomogeneous equations, to the time-independent Fokker-Plank equation μψx(x,μ)=b(μ)2ψμ2(x,μ) \mu \frac {\partial \psi}{\partial x} (x,\mu) = b(\mu) \frac {\partial^2 \psi}{\partial \mu^2} (x, \mu), 0<x<τ 0<x<\tau, μR \mu \in \R, as well as to other parabolic equations of the "forward-backward" type. The abstract kinetic equation Tdψ/dx=Aψ(x)+f(x) T d \psi/dx = - A \psi (x) + f(x), where T=TT=T^* is injective and AA satisfies a certain positivity assumption, is considered also.Comment: 20 pages, LaTeX2e, version 2, references have been added, changes in the introductio

    On sl^(3)\widehat{sl}(3) reduction, quantum gauge transformations, and W{\cal W}- algebras singular vectors

    Full text link
    The problem of describing the singular vectors of \cW_3 and \cW_3^{(2)} Verma modules is addressed, viewing these algebras as BRST quantized Drinfeld-Sokolov (DS) reductions of A2(1)A^{(1)}_2\,. Singular vectors of an A2(1)A^{(1)}_2\, Verma module are mapped into \W algebra singular vectors and are shown to differ from the latter by terms trivial in the BRST cohomology. These maps are realized by quantum versions of the highest weight DS gauge transformations.Comment: 9 page

    Singular Vectors and Topological Theories from Virasoro Constraints via the Kontsevich-Miwa Transform

    Full text link
    We use the Kontsevich-Miwa transform to relate the different pictures describing matter coupled to topological gravity in two dimensions: topological theories, Virasoro constraints on integrable hierarchies, and a DDK-type formalism. With the help of the Kontsevich-Miwa transform, we solve the Virasoro constraints on the KP hierarchy in terms of minimal models dressed with a (free) Liouville-like scalar. The dressing prescription originates in a topological (twisted N=2) theory. The Virasoro constraints are thus related to essentially the N=2 null state decoupling equations. The N=2 generators are constructed out of matter, the `Liouville' scalar, and c=2c=-2 ghosts. By a `dual' construction involving the reparametrization c=26c=-26 ghosts, the DDK dressing prescription is reproduced from the N=2 symmetry. As a by-product we thus observe that there are two ways to dress arbitrary d1d\leq1 or d25d\geq25 matter theory, that allow its embedding into a topological theory. By th e Kontsevich-Miwa transform, which introduces an infinite set of `time' variables trt_r, the equations ensuring the vanishing of correlators that involve BRST-exact primary states, factorize through the Virasoro generators expressed in terms of the trt_r. The background charge of these Virasoro generators is determined by the topological central charge.Comment: 62p. LaTeX, CERN-TH.6752, IMAFF-92/8, revised (minor corrections, typos) easy-fontversio
    corecore