1,413 research outputs found
AN ANALYSIS OF THE USE OF GRADES AND HOUSEBRAND LABELS IN THE RETAIL BEEF MARKET
The congruence of beef consumersÂ’ purchases with their stated preferences regarding internal fat content are examined. The role of U.S. Department of Agriculture (USDA) grades and housebrand labeling of beef in providing information to consumers is studied in the theoretical framework of search theory. The empirical results indicate that the current system of USDA grades and housebrand labels is not disseminating information regarding internal fat content effectively to consumers. Suggestions are made for providing consumers with better information and education necessary to increase congruence of expressed preferences regarding internal fat content and actual beef purchases.Food Consumption/Nutrition/Food Safety, Livestock Production/Industries,
Star formation in Chamaeleon I and III: a molecular line study of the starless core population
The Chamaeleon clouds are excellent targets for low-mass star formation
studies. Cha I and II are actively forming stars while Cha III shows no sign of
ongoing star formation. We aim to determine the driving factors that have led
to the very different levels of star formation activity in Cha I and III and
examine the dynamical state and possible evolution of the starless cores within
them. Observations were performed in various molecular transitions with APEX
and Mopra. Five cores are gravitationally bound in Cha I and one in Cha III.
The infall signature is seen toward 8-17 cores in Cha I and 2-5 cores in Cha
III, which leads to a range of 13-28% of the cores in Cha I and 10-25% of the
cores in Cha III that are contracting and may become prestellar. Future
dynamical interactions between the cores will not be dynamically significant in
either Cha I or III, but the subregion Cha I North may experience collisions
between cores within ~0.7 Myr. Turbulence dissipation in the cores of both
clouds is seen in the high-density tracers N2H+ 1-0 and HC3N 10-9. Evidence of
depletion in the Cha I core interiors is seen in the abundance distributions of
C17O, C18O, and C34S. Both contraction and static chemical models indicate that
the HC3N to N2H+ abundance ratio is a good evolutionary indicator in the
prestellar phase for both gravitationally bound and unbound cores. In the
framework of these models, we find that the cores in Cha III and the southern
part of Cha I are in a similar evolutionary stage and are less chemically
evolved than the central region of Cha I. The measured HC3N/N2H+ abundance
ratio and the evidence for contraction motions seen towards the Cha III
starless cores suggest that Cha III is younger than Cha I Centre and that some
of its cores may form stars in the future. The cores in Cha I South may on the
other hand be transient structures. (abridged)Comment: Accepted for publication in A&A. The resolution of Figure 2 has been
degraded and the abstract in the metadata has been shortened to fit within
the limits set by arXi
A hybrid moment equation approach to gas-grain chemical modeling
[Context] The stochasticity of grain chemistry requires special care in
modeling. Previously methods based on the modified rate equation, the master
equation, the moment equation, and Monte Carlo simulations have been used.
[Aims] We attempt to develop a systematic and efficient way to model the
gas-grain chemistry with a large reaction network as accurately as possible.
[Methods] We present a hybrid moment equation approach which is a general and
automatic method where the generating function is used to generate the moment
equations. For large reaction networks, the moment equation is cut off at the
second order, and a switch scheme is used when the average population of
certain species reaches 1. For small networks, the third order moments can also
be utilized to achieve a higher accuracy. [Results] For physical conditions in
which the surface reactions are important, our method provides a major
improvement over the rate equation approach, when benchmarked against the
rigorous Monte Carlo results. For either very low or very high temperatures, or
large grain radii, results from the rate equation are similar to those from our
new approach. Our method is faster than the Monte Carlo approach, but slower
than the rate equation approach. [Conclusions] The hybrid moment equation
approach with a cutoff and switch scheme is applicable to large gas-grain
networks, and is accurate enough to be used for astrochemistry studies. The
layered structure of the grain mantle could also be incorporated into this
approach, although a full implementation of the grain micro-physics appears to
be difficult.Comment: 11 pages, 4 figures. Accepted for publication in Astronomy and
Astrophysic
Four not six: revealing culturally common facial expressions of emotion
As a highly social species, humans generate complex facial expressions to communicate a diverse range of emotions. Since Darwin’s work, identifying amongst these complex patterns which are common across cultures and which are culture-specific has remained a central question in psychology, anthropology, philosophy, and more recently machine vision and social robotics. Classic approaches to addressing this question typically tested the cross-cultural recognition of theoretically motivated facial expressions representing six emotions, and reported universality. Yet, variable recognition accuracy across cultures suggests a narrower cross-cultural communication, supported by sets of simpler expressive patterns embedded in more complex facial expressions. We explore this hypothesis by modelling the facial expressions of over 60 emotions across two cultures, and segregating out the latent expressive patterns. Using a multi-disciplinary approach, we first map the conceptual organization of a broad spectrum of emotion words by building semantic networks in two cultures. For each emotion word in each culture, we then model and validate its corresponding dynamic facial expression, producing over 60 culturally valid facial expression models. We then apply to the pooled models a multivariate data reduction technique, revealing four latent and culturally common facial expression patterns that each communicates specific combinations of valence, arousal and dominance. We then reveal the face movements that accentuate each latent expressive pattern to create complex facial expressions. Our data questions the widely held view that six facial expression patterns are universal, instead suggesting four latent expressive patterns with direct implications for emotion communication, social psychology, cognitive neuroscience, and social robotics
Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach
Finite temperature bosonization
Finite temperature properties of a non-Fermi liquid system is one of the most
challenging probelms in current understanding of strongly correlated electron
systems. The paradigmatic arena for studying non-Fermi liquids is in one
dimension, where the concept of a Luttinger liquid has arisen. The existence of
a critical point at zero temperature in one dimensional systems, and the fact
that experiments are all undertaken at finite temperature, implies a need for
these one dimensional systems to be examined at finite temperature.
Accordingly, we extended the well-known bosonization method of one dimensional
electron systems to finite temperatures. We have used this new bosonization
method to calculate finite temperature asymptotic correlation functions for
linear fermions, the Tomonaga-Luttinger model, and the Hubbard model.Comment: REVTex, 48 page
Parameterizing the interstellar dust temperature
The temperature of interstellar dust particles is of great importance to
astronomers. It plays a crucial role in the thermodynamics of interstellar
clouds, because of the gas-dust collisional coupling. It is also a key
parameter in astrochemical studies that governs the rate at which molecules
form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression
for the dust temperature is adopted, because of computational constraints,
while astrochemical modelers tend to keep the dust temperature constant over a
large range of parameter space. Our aim is to provide an easy-to-use parametric
expression for the dust temperature as a function of visual extinction () and to shed light on the critical dependencies of the dust temperature on
the grain composition. We obtain an expression for the dust temperature by
semi-analytically solving the dust thermal balance for different types of
grains and compare to a collection of recent observational measurements. We
also explore the effect of ices on the dust temperature. Our results show that
a mixed carbonaceous-silicate type dust with a high carbon volume fraction
matches the observations best. We find that ice formation allows the dust to be
warmer by up to 15% at high optical depths ( mag) in the
interstellar medium. Our parametric expression for the dust temperature is
presented as , where is in units of the Draine (1978) UV fieldComment: 16 pages, 17 figures, 4 tables. Accepted for publication in A&A.
Version 2: the omission of factor 0.921 in equation 4 is correcte
Complexities of trial recruitment in the care home setting: an illustration via the DCM (TM) epic (dementia care mapping (TM) : to enable person-centred care in care homes) trial
The chemistry of C3 & Carbon Chain Molecules in DR21(OH)
(Abridged) We have observed velocity resolved spectra of four ro-vibrational
far-infrared transitions of C3 between the vibrational ground state and the
low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on
board Herschel, in DR21(OH), a high mass star forming region. Several
transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM
30m telescope. A gas and grain warm-up model was used to identify the primary
C3 forming reactions in DR21(OH). We have detected C3 in absorption in four
far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1
and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in
velocity to be identified in the C3 spectra. All C3 transitions are detected
from the embedded source MM2 and the surrounding envelope, whereas only Q(4) &
P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope
and MM2 is \sim6x10^{-10} and \sim3x10^{-9} respectively. For CCH and c-C3H2 we
only detect emission from the envelope and MM1. The observed CCH, C3, and
c-C3H2 abundances are most consistent with a chemical model with
n(H2)\sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time
of \sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the
grain at t\sim 0.2 Myr and lasting for 1 Myr can explain the observed C3
abundance in the envelope of DR21(OH) and no mechanism involving
photodestruction of PAH molecules is required. The chemistry in the envelope is
similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos.
The observed lower C3 abundance in MM1 as compared to MM2 and the envelope
could be indicative of destruction of C3 in the more evolved MM1. The timescale
for the chemistry derived for the envelope is consistent with the dynamical
timescale of 2 Myr derived for DR21(OH) in other studies.Comment: 11 Pages, 6 figures, accepted for publication in A&
Incorporation of stochastic chemistry on dust grains in the PDR code using moment equations
Unlike gas-phase reactions, chemical reactions taking place on interstellar
dust grain surfaces cannot always be modeled by rate equations. Due to the
small grain sizes and low flux,these reactions may exhibit large fluctuations
and thus require stochastic methods such as the moment equations.
We evaluate the formation rates of H2, HD and D2 molecules on dust grain
surfaces and their abundances in the gas phase under interstellar conditions.
We incorporate the moment equations into the Meudon PDR code and compare the
results with those obtained from the rate equations. We find that within the
experimental constraints on the energy barriers for diffusion and desorption
and for the density of adsorption sites on the grain surface, H2, HD and D2
molecules can be formed efficiently on dust grains.
Under a broad range of conditions, the moment equation results coincide with
those obtained from the rate equations. However, in a range of relatively high
grain temperatures, there are significant deviations. In this range, the rate
equations fail while the moment equations provide accurate results. The
incorporation of the moment equations into the PDR code can be extended to
other reactions taking place on grain surfaces
- …
