5,471 research outputs found
Lepton flavour violation in The Little Higgs model
Little Higgs models with T-parity have a new source of lepton flavour
violation. In this paper we consider the anomalous magnetic moment of the muon
\gmtwo and the lepton flavour violating decays \mutoeg and \tautomug in Little
Higgs model with T-parity \cite{Goyal:2006vq}. Our results shows that present
experimental constraints of \mutoeg is much more useful to constrain the new
sources of flavour violation which are present in T-parity models.Comment: LaTeX file with 13 eps figures (included
Evaluating the Usability of Automatically Generated Captions for People who are Deaf or Hard of Hearing
The accuracy of Automated Speech Recognition (ASR) technology has improved,
but it is still imperfect in many settings. Researchers who evaluate ASR
performance often focus on improving the Word Error Rate (WER) metric, but WER
has been found to have little correlation with human-subject performance on
many applications. We propose a new captioning-focused evaluation metric that
better predicts the impact of ASR recognition errors on the usability of
automatically generated captions for people who are Deaf or Hard of Hearing
(DHH). Through a user study with 30 DHH users, we compared our new metric with
the traditional WER metric on a caption usability evaluation task. In a
side-by-side comparison of pairs of ASR text output (with identical WER), the
texts preferred by our new metric were preferred by DHH participants. Further,
our metric had significantly higher correlation with DHH participants'
subjective scores on the usability of a caption, as compared to the correlation
between WER metric and participant subjective scores. This new metric could be
used to select ASR systems for captioning applications, and it may be a better
metric for ASR researchers to consider when optimizing ASR systems.Comment: 10 pages, 8 figures, published in ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS '17
Editorial: Empirical elephants—Why multiple methods are essential to quality research in operations and supply chain management
Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics—An Important Nutri-Cereal of Future
The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologues from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet
Nature of Intra-night Optical Variability of BL Lacertae
We present the results of extensive multi-band intra-night optical monitoring
of BL Lacertae during 2010--2012. BL Lacertae was very active in this period
and showed intense variability in almost all wavelengths. We extensively
observed it for a total for 38 nights; on 26 of them observations were done
quasi-simultaneously in B, V, R and I bands (totaling 113 light curves), with
an average sampling interval of around 8 minutes. BL Lacertae showed
significant variations on hour-like timescales in a total of 19 nights in
different optical bands. We did not find any evidence for periodicities or
characteristic variability time-scales in the light curves.
The intranight variability amplitude is generally greater at higher
frequencies and decreases as the source flux increases.
We found spectral variations in BL Lacertae in the sense that the optical
spectrum becomes flatter as the flux increases but in several flaring states
deviates from the linear trend suggesting different jet components contributing
to the emission at different times.Comment: 12 Pages, 5 figures, 3 Tables, Accepted for Publication in MNRA
Long-term optical variability of PKS 2155-304
Aims: The optical variability of the blazar PKS 2155-304 is investigated to
characterise the red noise behaviour at largely different time scales from 20
days to O(>10 yrs). Methods: The long-term optical light curve of PKS 2155-304
is assembled from archival data as well as from so-far unpublished observations
mostly carried out with the ROTSE-III and the ASAS robotic telescopes. A
forward folding technique is used to determine the best-fit parameters for a
model of a power law with a break in the power spectral density function (PSD).
The best-fit parameters are estimated using a maximum-likelihood method with
simulated light curves in conjunction with the Lomb Scargle Periodogram (LSP)
and the first-order Structure Function (SF). In addition, a new approach based
upon the so-called Multiple Fragments Variance Function (MFVF) is introduced
and compared to the other methods. Simulated light curves have been used to
confirm the reliability of these methods as well as to estimate the
uncertainties of the best-fit parameters. Results: The light curve is
consistent with the assumed broken power-law PSD. All three methods agree
within the estimated uncertainties with the MFVF providing the most accurate
results. The red-noise behaviour of the PSD in frequency f follows a power law
with f^-{\beta}, {\beta}=1.8 +0.1/-0.2 and a break towards f^0 at frequencies
lower than f_min=(2.7 +2.2/-1.6 yrs)^-1.Comment: 10 pages, 8 figures, the ROTSE-light curve can be downloaded from
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/531/A12
Owl and Lizard: Patterns of Head Pose and Eye Pose in Driver Gaze Classification
Accurate, robust, inexpensive gaze tracking in the car can help keep a driver
safe by facilitating the more effective study of how to improve (1) vehicle
interfaces and (2) the design of future Advanced Driver Assistance Systems. In
this paper, we estimate head pose and eye pose from monocular video using
methods developed extensively in prior work and ask two new interesting
questions. First, how much better can we classify driver gaze using head and
eye pose versus just using head pose? Second, are there individual-specific
gaze strategies that strongly correlate with how much gaze classification
improves with the addition of eye pose information? We answer these questions
by evaluating data drawn from an on-road study of 40 drivers. The main insight
of the paper is conveyed through the analogy of an "owl" and "lizard" which
describes the degree to which the eyes and the head move when shifting gaze.
When the head moves a lot ("owl"), not much classification improvement is
attained by estimating eye pose on top of head pose. On the other hand, when
the head stays still and only the eyes move ("lizard"), classification accuracy
increases significantly from adding in eye pose. We characterize how that
accuracy varies between people, gaze strategies, and gaze regions.Comment: Accepted for Publication in IET Computer Vision. arXiv admin note:
text overlap with arXiv:1507.0476
Multiband optical variability of the blazar OJ 287 during its outbursts in 2015 -- 2016
We present recent optical photometric observations of the blazar OJ 287 taken
during September 2015 -- May 2016. Our intense observations of the blazar
started in November 2015 and continued until May 2016 and included detection of
the large optical outburst in December 2016 that was predicted using the binary
black hole model for OJ 287. For our observing campaign, we used a total of 9
ground based optical telescopes of which one is in Japan, one is in India,
three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the
USA. These observations were carried out in 102 nights with a total of ~ 1000
image frames in BVRI bands, though the majority were in the R band. We detected
a second comparably strong flare in March 2016. In addition, we investigated
multi-band flux variations, colour variations, and spectral changes in the
blazar on diverse timescales as they are useful in understanding the emission
mechanisms. We briefly discuss the possible physical mechanisms most likely
responsible for the observed flux, colour and spectral variability.Comment: 11 pages, 6 figures, 4 tables; Accepted for publication in MNRA
- …
