425 research outputs found

    Immunomodulators for Asthma

    Get PDF
    New information regarding the molecular mechanisms of allergic disorders has led to a variety of novel therapeutic approaches. This article briefly reviews the pathogenesis of asthma and allergic diseases, discusses the rationale behind using immunomodulators in these diseases; and examines the therapeutic effects of immunomodulators on allergic diseases. There are a number of immunomodulators that have been developed for the treatment of allergic disorders. Some have looked very promising in pre-clinical trials, but have not shown significant benefits in human clinical trials thus indicating the disparity between mouse models and human asthma. This review focuses on immunomodulators that are in human clinical trials and not molecules in pre-clinical development

    Diverse democracies and the practice of federalism

    Get PDF
    This chapter draws a distinction between the institutions of federation and the informal practices of federalism within the context of multinational democracies. Building on this distinction, the chapter argues that informal practices of federalism may be just as important, if not more important, than the formal institutions of federation in reconciling unity and diversity in multinational settings. The argument is developed through a comparison of the workings of four multinational democracies: interwar Czechoslovakia, post-Quiet Revolution Canada, post-Franco Spain and post-devolution United Kingdom. The chapter’s conclusion applies the argument to understanding the possible implications, in India, of the Modi government’s decision to impose direct rule on Jammu and Kashmir

    Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lysophosphatidic acid (LPA) plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA<sub>1-3</sub>). We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation.</p> <p>Methods</p> <p/> <p>Wild type, LPA<sub>1 </sub>heterozygous knockout mice (LPA<sub>1</sub><sup>+/-</sup>), and LPA<sub>2 </sub>heterozygous knockout mice (LPA<sub>2</sub><sup>+/-</sup>) were sensitized with inactivated <it>Schistosoma mansoni </it>eggs and local antigenic challenge with <it>Schistosoma mansoni </it>soluble egg Ag (SEA) in the lungs. Bronchoalveolar larvage (BAL) fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA.</p> <p>Results</p> <p>BAL fluids from <it>Schistosoma mansoni </it>egg-sensitized and challenged wild type mice (4 days of challenge) showed increase of LPA level (~2.8 fold), compared to control mice. LPA<sub>2</sub><sup>+/- </sup>mice, but not LPA<sub>1</sub><sup>+/- </sup>mice, exposed to <it>Schistosoma mansoni </it>egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA<sub>2</sub><sup>+/- </sup>and LPA<sub>1</sub><sup>+/- </sup>mice showed decreases in bronchial goblet cells. LPA<sub>2</sub><sup>+/- </sup>mice, but not LPA<sub>1</sub><sup>+/- </sup>mice showed the decreases in prostaglandin E2 (PGE2) and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA<sub>2</sub><sup>+/- </sup>mice. These results suggest that LPA and LPA receptors are involved in <it>Schistosoma mansoni </it>egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.</p

    Identification of Nine Novel Loci Associated with White Blood Cell Subtypes in a Japanese Population

    Get PDF
    White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10−8, of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits

    Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease

    Get PDF
    Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine—choline, trimethylamine N-oxide (TMAO) and betaine—were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease

    Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis

    Get PDF
    Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75432/1/j.1365-2222.2006.02498.x.pd

    Searching for Solar KDAR with DUNE

    Get PDF
    The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Full text link
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model.Comment: Contribution to Snowmass 202
    corecore