2,764 research outputs found
Fission decay of N = Z nuclei at high angular momentum: Zn
Using a unique two-arm detector system for heavy ions (the BRS, binary
reaction spectrometer) coincident fission events have been measured from the
decay of Zn compound nuclei formed at 88MeV excitation energy in the
reactions with Ar beams on a Mg target at Ar) =
195 MeV. The detectors consisted of two large area position sensitive (x,y) gas
telescopes with Bragg-ionization chambers. From the binary coincidences in the
two detectors inclusive and exclusive cross sections for fission channels with
differing losses of charge were obtained. Narrow out-of-plane correlations
corresponding to coplanar decay are observed for two fragments emitted in
binary events, and in the data for ternary decay with missing charges from 4 up
to 8. After subtraction of broad components these narrow correlations are
interpreted as a ternary fission process at high angular momentum through an
elongated shape. The lighter mass in the neck region consists dominantly of two
or three-particles. Differential cross sections for the different mass splits
for binary and ternary fission are presented. The relative yields of the binary
and ternary events are explained using the statistical model based on the
extended Hauser-Feshbach formalism for compound nucleus decay. The ternary
fission process can be described by the decay of hyper-deformed states with
angular momentum around 45-52 .Comment: 23 pages, 25 figure
Atmospheric studies of habitability in the Gliese 581 system
The M-type star Gliese 581 is orbited by at least one terrestrial planet
candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown
that additional planets inside the habitable zone of GL 581 would be
dynamically stable. Recently, two further planet candidates have been claimed,
one of them in the habitable zone.
In view of the ongoing search for planets around M stars which is expected to
result in numerous detections of potentially habitable Super-Earths, we take
the GL 581 system as an example to investigate such planets. In contrast to
previous studies of habitability in the GL 581 system, we use a consistent
atmospheric model to assess surface conditions and habitability. Furthermore,
we perform detailed atmospheric simulations for a much larger subset of
potential planetary and atmospheric scenarios than previously considered.
A 1D radiative-convective atmosphere model is used to calculate temperature
and pressure profiles of model atmospheres, which we assumed to be composed of
molecular nitrogen, water, and carbon dioxide. In these calculations, key
parameters such as surface pressure and CO2 concentration as well as orbital
distance and planetary mass are varied.
Results imply that surface temperatures above freezing could be obtained,
independent of the here considered atmospheric scenarios, at an orbital
distance of 0.117 AU. For an orbital distance of 0.146 AU, CO2 concentrations
as low as 10 times the present Earth's value are sufficient to warm the surface
above the freezing point of water. At 0.175 AU, only scenarios with CO2
concentrations of 5% and 95% were found to be habitable. Hence, an additional
Super-Earth planet in the GL 581 system in the previously determined dynamical
stability range would be considered a potentially habitable planet.Comment: 5 pages, 4 figures, accepted in Astronomy&Astrophysic
The extrasolar planet Gliese 581 d: a potentially habitable planet? (Corrigendum to arXiv:1009.5814)
We report here that the equation for H2O Rayleigh scattering was incorrectly
stated in the original paper [arXiv:1009.5814]. Instead of a quadratic
dependence on refractivity r, we accidentally quoted an r^4 dependence. Since
the correct form of the equation was implemented into the model, scientific
results are not affected.Comment: accepted to Astronomy&Astrophysic
The population of deformed bands in Cr by emission of Be from the S + Mg reaction
Using particle- coincidences we have studied the population of final
states after the emission of 2 -particles and of Be in nuclei
formed in S+Mg reactions at an energy of . The data were obtained in a setup
consisting of the GASP -ray detection array and the multidetector array
ISIS. Particle identification is obtained from the E and E signals of
the ISIS silicon detector telescopes, the Be being identified by the
instantaneous pile up of the E and E pulses. -ray decays of the
Cr nucleus are identified with coincidences set on 2 -particles
and on Be. Some transitions of the side-band with show
stronger population for Be emission relative to that of 2
-particles (by a factor ). This observation is interpreted as
due to an enhanced emission of Be into a more deformed nucleus.
Calculations based on the extended Hauser-Feshbach compound decay formalism
confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.
EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.A routine part of the process for developing National Institute for Health and Care Excellence (NICE) medical technologies guidance is a submission of clinical and economic evidence by the technology manufacturer. The Birmingham and Brunel Consortium External Assessment Centre (EAC; a consortium of the University of Birmingham and Brunel University) independently appraised the submission on the EXOGEN bone healing system for long bone fractures with non-union or delayed healing. This article is an overview of the original evidence submitted, the EAC’s findings, and the final NICE guidance issued.The Birmingham and Brunel Consortium is funded by NICE to act as an External Assessment Centre for the Medical Technologies Evaluation Programme
Unsplittable coverings in the plane
A system of sets forms an {\em -fold covering} of a set if every point
of belongs to at least of its members. A -fold covering is called a
{\em covering}. The problem of splitting multiple coverings into several
coverings was motivated by classical density estimates for {\em sphere
packings} as well as by the {\em planar sensor cover problem}. It has been the
prevailing conjecture for 35 years (settled in many special cases) that for
every plane convex body , there exists a constant such that every
-fold covering of the plane with translates of splits into
coverings. In the present paper, it is proved that this conjecture is false for
the unit disk. The proof can be generalized to construct, for every , an
unsplittable -fold covering of the plane with translates of any open convex
body which has a smooth boundary with everywhere {\em positive curvature}.
Somewhat surprisingly, {\em unbounded} open convex sets do not misbehave,
they satisfy the conjecture: every -fold covering of any region of the plane
by translates of such a set splits into two coverings. To establish this
result, we prove a general coloring theorem for hypergraphs of a special type:
{\em shift-chains}. We also show that there is a constant such that, for
any positive integer , every -fold covering of a region with unit disks
splits into two coverings, provided that every point is covered by {\em at
most} sets
Control over phase separation and nucleation using a laser-tweezing potential
Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter
Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones
The effects of multi-layered clouds in the atmospheres of Earth-like planets
orbiting different types of stars are studied. The radiative effects of cloud
particles are directly correlated with their wavelength-dependent optical
properties. Therefore the incident stellar spectra may play an important role
for the climatic effect of clouds. We discuss the influence of clouds with mean
properties measured in the Earth's atmosphere on the surface temperatures and
Bond albedos of Earth-like planets orbiting different types of main sequence
dwarf stars.Comment: accepted for publication in A&
A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures
We discuss the design, operation, and performance of a vacuum setup
constructed for use in zero (or reduced) gravity conditions to initiate
collisions of fragile millimeter-sized particles at low velocity and
temperature. Such particles are typically found in many astronomical settings
and in regions of planet formation. The instrument has participated in four
parabolic flight campaigns to date, operating for a total of 2.4 hours in
reduced gravity conditions and successfully recording over 300 separate
collisions of loosely packed dust aggregates and ice samples. The imparted
particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed,
high-resolution camera captures the events at 107 frames per second from two
viewing angles separated by either 48.8 or 60.0 degrees. The particles can be
stored inside the experiment vacuum chamber at temperatures of 80-300 K for
several uninterrupted hours using a built-in thermal accumulation system. The
copper structure allows cooling down to cryogenic temperatures before
commencement of the experiments. Throughout the parabolic flight campaigns,
add-ons and modifications have been made, illustrating the instrument
flexibility in the study of small particle collisions.Comment: D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P.
Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Drinkwater, K.
Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. van der
Tuijn, H. J. Fraser, and J. Blu
- …
