71 research outputs found

    Estimating the burden of disease attributable to four selected environmental risk factors in South Africa

    Get PDF
    The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure.The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty.Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease.This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels

    Water-based epidemiological investigation of hepatitis E Virus in South Africa

    Get PDF
    Hepatitis E virus (HEV) is an emerging zoonotic pathogen that exhibits great host diversity. The primary means of transmission of the virus in low- and middle-income countries is contaminated water, often due to a lack of access to proper sanitation, which leads to faecal contamination of water sources. Environmental surveillance is an important tool that can be used to monitor virus circulation and as an early warning system for outbreaks. This study was conducted to determine the prevalence and genetic diversity of HEV in wastewater, surface water (rivers and standpipe/ablution water), and effluent from a piggery in South Africa. A total of 536 water samples were screened for HEV using real-time reverse transcription polymerase chain reaction. Overall, 21.8% (117/536) of the wastewater, river, and ablution water samples tested positive for HEV, whereas 74.4% (29/39) of the samples from the piggery tested positive. Genotyping revealed sequences belonging to HEV genotypes 3 (98%, 53/54) and 4 (2%, 1/54), with subtypes 3c, 3f, and 4b being identified.The University of Pretoria, the Poliomyelitis Research Foundation, the Department of Science and Innovation, the Water Research Commission, NRF, PRF, the DSI and the WRC.http://link.springer.com/journal/12560Medical VirologySDG-03:Good heatlh and well-beingSDG-06:Clean water and sanitatio

    Treated Acid Mine Drainage and Stream Recovery: Downstream Impacts on Benthic Macroinvertebrate Communities in Relation to Multispecies Toxicity Bioassays

    Get PDF
    Research ArticleThe success and long term effectiveness of extensive and expensive engineering solutions to restore streams impacted by Acid Mine Drainage (AMD) is rarely tested. Concentrations of pollutants were measured in water along a longitudinal gradient from a stretch of the Tweelopie stream, South Africa, that receives pH-treated acid mine drainage (AMD) from an abandoned gold mine. The biotoxic effects of treated AMD were determined through macroinvertebrate biotic indices (SASS5) and a battery of toxicity bioassays. These included the L. sativa, A. cepa, D. magna toxicity and Ames mutagenicity tests, as well as an in vitro human liver cancer cell line HepG2. Even though the Tweelopie stream was moderately to severely degraded by multiple anthropogenic stressors, the impact of the treated AMD was masked by the improvement in the system downstream after mixing with the domestic wastewater effluent receiving stream, and subsequent further dilution as a result of the karst springs downstream. The general improvement of the system downstream was clearly shown by the decrease in the ecotoxicity and mutagenicity in relation to the in-stream macroinvertebrates. PCA multivariate analysis successfully displayed associations between the different environmental variables and the decrease in toxicity and subsequent ecosystem improvement downstream. This study indicated that environmental management of AMD remediation should consider long term assessment strategies, including multiple factors, to promote biological ecosystem recovery

    Quality of Water the Slum Dwellers Use: The Case of a Kenyan Slum

    Get PDF
    As a result of rapid urbanization in a context of economic constraints, the majority of urban residents in sub-Saharan Africa live in slums often characterized by a lack of basic services such as water and sewerage. Consequently, the urban poor often use inexpensive pit latrines and at the same time may draw domestic water from nearby wells. Overcrowding in slums limits the adequate distance between wells and pit latrines so that micro-organisms migrate from latrines to water sources. Sanitary practices in these overcrowded slums are also poor, leading to contamination of these wells. This study sought to assess sanitary practices of residents of a Kenyan urban slum and fecal contamination of their domestic water sources. This cross-sectional study involved 192 respondents from Langas slum, Kenya. Forty water samples were collected from the water sources used by the respondents for laboratory analysis of coliforms. Of these 40 samples, 31 were from shallow wells, four from deep wells, and five from taps. Multiple-tube fermentation technique was used to enumerate coliform bacteria in water. The study found that most people (91%) in the Langas slum used wells as the main source of domestic water, whereas the rest used tap water. Whereas most people used pit latrines for excreta disposal, a substantial percentage (30%) of children excreted in the open field. The estimated distance between the pit latrines and the wells was generally short with about 40% of the pit latrines being less than 15 m from the wells. The main domestic water sources were found to be highly contaminated with fecal matter. Total coliforms were found in 100% of water samples from shallow wells, while 97% of these samples from shallow wells were positive for thermotolerant coliforms. Three out of the four samples from deep wells were positive for total coliforms, while two of the four samples were positive for thermotolerant coliforms. None of the samples from taps were positive for either total or thermotolerant coliforms. Because the presence of thermotolerant coliforms in water indicates fecal contamination, facilitated by the proximity between the wells and pit latrines, the study suggests that the pit latrines were a major source of contamination of the wells with fecal matter. However, contamination through surface runoff during rains is also plausible as indiscriminate excreta disposal particularly by children was also common. Owing to the fecal contamination, there is a high possibility of the presence of disease pathogens in the water; thus, the water from the wells in Langas may not be suitable for human consumption. To address this problem, treatment of the water at community or household level and intensive behavioral change in sanitary practices are recommended. Efforts should be made to provide regulated tap water to this community and to other slums in sub-Saharan Africa where tap water is not accessible. However, more sampling of different water sources is recommended

    Advantages and Disadvantages of the Use of Immunodetection Techniques for the Enumeration of Microorganisms and Toxins in Water

    Full text link
    The application of immunological techniques to the analytical challenges presented by water pollution and its tremendous expansion during recent decades are reviewed. Examples of the immunodetection methods evaluated for their advantages and disadvantages in the water field include the use of enzyme-linked immunosorbent assays (ELISA) and radio-immuno-assays (RIA) for the direct detection of viruses from water concentrates; cyto-immuno-labelling and immunofluorescence techniques specific for rota and hepatitis A viruses; and the use of ELISA and immunofluorescence for the detection of bacteria (Legionella, faecal coliforms) and protozoan parasites (Giardia, Cryptosporidium). Jhe production and use of monoclonal antibodies against algal toxins are also evaluated. The advantages to be gained by utilizing these techniques in the water field are numerous. In general, they simplify the detection method, shorten detection time and are less labour intensive than other conventional methods. They also provide a tool for the detection of pollutants that otherwise could not be identified. However, many disadvantages are associated with utilising immunological techniques. False positives are often reported due to reactions with nonspecific matter in the water sample or cross-reactivity with a wide range of organisms. These methods are also unable to indicate the viability of organisms. The successful use of immunodetection techniques in the water field often depends on their combination with conventional culturing methods and/or microscopic observation.</jats:p

    Epistula de proverbiis Romanorum ad animalium naturam pertinentibus.

    No full text
    Programm--Novum gymnasium, Hamburg.Mode of access: Internet

    Antimicrobial resistance screening and profiles: a glimpse from the South African perspective

    Full text link
    Abstract According to the Centre for Disease Dynamics Economics and Policy, South Africa represents a paradox of antibiotic management similar to other developing countries, with both overuse and underuse (resulting from lack of access) of antibiotics. In addition, wastewater reuse may contribute towards antibiotic resistance through selective pressure that increases resistance in native bacteria and on clinically relevant bacteria, increasing resistance profiles of the common pathogens. Sediments of surface water bodies and wastewater sludge provide a place where antibiotic resistance genes are transferred to other bacteria. Crop irrigation is thought to be a potential source of exposure to antibiotic-resistant bacteria through the transfer from the water or sludge into crops. The objectives of this study were to examine the antibiotic-resistance profiles of Escherishia coli from three agricultural locations in the Western Cape, South Africa. Using a classical microbiology culture approach, the resistance profiles of E. coli species isolated from river water and sediments, farm dams and their sediments and a passive algal wastewater treatment ponds and sediment used for crop irrigation were assessed for resistance to 13 commonly used antibiotics. Randomly selected E. coli isolates from the sediment and water were tested for resistance. 100% of E. coli isolates were resistant to sulphamethoxazole, highlighting its relevance in the South African context. In river water and farm dam samples, only the E. coli isolated from sediment were found to be resistant to fluoroquinolone or fluorifenicol. In the wastewater treatment ponds, the resistance profiles of E. coli isolated from sediments differed from those isolated from effluent, with 90% of the effluent isolates being resistant to ampicillin. Isolates from the sediment were less resistant (40%) to ampicillin, whereas all the isolates from the pond water and sediment samples were resistant to sulphamethoxazole. These results illustrate the importance of developing a better understanding of antibiotic resistance in agriculture and wastewater scenarios to ensure remedial measures take place where the greatest benefit can be realised especially in countries with limited financial and infrastructural resources. Moreover, the potential for passive algal treatment as an effective, feasible alternative for wastewater treatment is highlighted, with comparable resistance profiles and a reducing overall resistance in the sediment samples.</jats:p

    Ueber den etruskischen tauschhandel nach dem Norden.

    No full text
    Mode of access: Internet
    corecore