1,236 research outputs found

    Research on cold cathodes Second quarterly report, 14 Aug. - 14 Nov. 1965

    Get PDF
    GaP/tungsten and GaP/platinum diode and tungsten/barium oxide phototube fabrication and testing in cold cathode stud

    Research on cold cathodes Final report

    Get PDF
    Semiconductor/metal hot electron cold cathode

    Research on cold cathodes Third quarterly report, 14 Nov. 1965 - 14 Feb. 1966

    Get PDF
    Electrical measurements on GaP/Pd diodes and Pd/BaO and Ni/BaO photoelectric work functions in cold cathode stud

    Non-detection of a pulsar-powered nebula in Puppis A, and implications for the nature of the radio-quiet neutron star RX J0822-4300

    Get PDF
    We report on a deep radio search for a pulsar wind nebula associated with the radio-quiet neutron star RX J0822-4300 in the supernova remnant Puppis A. The well-determined properties of Puppis A allow us to constrain the size of any nebula to less than 30 arcsec; however we find no evidence for such a source on any spatial scale up to 30 arcmin. These non-detections result in an upper limit on the radio luminosity of any pulsar-powered nebula which is three orders of magnitude below what would be expected if RX J0822-4300 was an energetic young radio pulsar beaming away from us, and cast doubt on a recent claim of X-ray pulsations from this source. The lack of a radio nebula leads us to conclude that RX J0822-4300 has properties very different from most young radio pulsars, and that it represents a distinct population which may be as numerous, or even more so, than radio pulsars.Comment: 5 pages, including 2 embedded EPS figures, uses emulateapj.sty. Accepted to ApJ Letters (minor changes made following referee's report

    General Relativistic Electromagnetic Fields of a Slowly Rotating Magnetized Neutron Star. I. Formulation of the equations

    Full text link
    We present analytic solutions of Maxwell equations in the internal and external background spacetime of a slowly rotating magnetized neutron star. The star is considered isolated and in vacuum, with a dipolar magnetic field not aligned with the axis of rotation. With respect to a flat spacetime solution, general relativity introduces corrections related both to the monopolar and the dipolar parts of the gravitational field. In particular, we show that in the case of infinite electrical conductivity general relativistic corrections due to the dragging of reference frames are present, but only in the expression for the electric field. In the case of finite electrical conductivity, however, corrections due both to the spacetime curvature and to the dragging of reference frames are shown to be present in the induction equation. These corrections could be relevant for the evolution of the magnetic fields of pulsars and magnetars. The solutions found, while obtained through some simplifying assumption, reflect a rather general physical configuration and could therefore be used in a variety of astrophysical situations.Comment: A few typos corrected; matches the versions in MNRA

    Co-regularised support vector regression

    Get PDF
    We consider a semi-supervised learning scenario for regression, where only few labelled examples, many unlabelled instances and different data representations (multiple views) are available. For this setting, we extend support vector regression with a co-regularisation term and obtain co-regularised support vector regression (CoSVR). In addition to labelled data, co-regularisation includes information from unlabelled examples by ensuring that models trained on different views make similar predictions. Ligand affinity prediction is an important real-world problem that fits into this scenario. The characterisation of the strength of protein-ligand bonds is a crucial step in the process of drug discovery and design. We introduce variants of the base CoSVR algorithm and discuss their theoretical and computational properties. For the CoSVR function class we provide a theoretical bound on the Rademacher complexity. Finally, we demonstrate the usefulness of CoSVR for the affinity prediction task and evaluate its performance empirically on different protein-ligand datasets. We show that CoSVR outperforms co-regularised least squares regression as well as existing state-of-the-art approaches for affinity prediction

    XMM-Newton Observations of Radio Pulsars B0834+06 and B0826-34 and Implications for Pulsar Inner Accelerator

    Full text link
    We report the X-ray observations of two radio pulsars with drifting subpulses: B0834 + 06 and B0826 - 34 using \xmm\. PSR B0834 + 06 was detected with a total of 70 counts from the three EPIC instruments over 50 ks exposure time. Its spectrum was best described as that of a blackbody (BB) with temperature Ts=(2.00.9+2.0)×106T_s=(2.0^{+2.0}_{-0.9}) \times 10^6 K and bolometric luminosity of Lb=(8.64.4+14.2)×1028L_b=(8.6^{+14.2}_{-4.4}) \times 10^{28} erg s1^{-1}. As it is typical in pulsars with BB thermal components in their X-ray spectra, the hot spot surface area is much smaller than that of the canonical polar cap, implying a non-dipolar surface magnetic field much stronger than the dipolar component derived from the pulsar spin-down (in this case about 50 times smaller and stronger, respectively). The second pulsar PSR B0826 - 34 was not detected over 50 ks exposure time, giving an upper limit for the bolometric luminosity Lb1.4×1029L_b \leq 1.4 \times 10^{29} erg s1^{-1}. We use these data as well as the radio emission data concerned with drifting subpulses to test the Partially Screened Gap (PSG) model of the inner accelerator in pulsars.Comment: Accepted for publication by The Astrophysical Journa

    Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Get PDF
    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex~ ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes it feasible to observe its less common isotopologues. As a step in our investigation of C-13 fractionation patterns in the ISM, we here present comparisons between observations of the C-13 fraction in formaldehyde, and chemical fractionation models

    Flux Expulsion - Field Evolution in Neutron Stars

    Get PDF
    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.Comment: 23 pages, + 7 figures, accepted for publication in Ap
    corecore