5,841 research outputs found

    Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature

    Get PDF
    We prove convergence results for expanding curvature flows in the Euclidean and hyperbolic space. The flow speeds have the form FpF^{-p}, where p>1p>1 and FF is a positive, strictly monotone and 1-homogeneous curvature function. In particular this class includes the mean curvature F=HF=H. We prove that a certain initial pinching condition is preserved and the properly rescaled hypersurfaces converge smoothly to the unit sphere. We show that an example due to Andrews-McCoy-Zheng can be used to construct strictly convex initial hypersurfaces, for which the inverse mean curvature flow to the power p>1p>1 loses convexity, justifying the necessity to impose a certain pinching condition on the initial hypersurface.Comment: 18 pages. We included an example for the loss of convexity and pinching. In the third version we dropped the concavity assumption on F. Comments are welcom

    Fabrication, Characterisation and Tribological Investigation of Artificial Skin Surface Lipid Films

    Get PDF
    This article deals with the tribology of lipid coatings that resemble those found on human skin. In order to simulate the lipidic surface chemistry of human skin, an artificial sebum formulation that closely resembles human sebum was spray-coated onto mechanical skin models in physiologically relevant concentrations (5-100μg/cm2). Water contact angles and surface free energies (SFEs) showed that model surfaces with ≤25μg/cm2 lipids appropriately mimic the physico-chemical properties of dry, sebum-poor skin regions. In friction experiments with a steel ball, lipid-coated model surfaces demonstrated lubrication effects over a wide range of sliding velocities and normal loads. In friction measurements on model surfaces as a function of lipid-film thickness, a clear minimum in the friction coefficient (COF) was observed in the case of hydrophilic, high-SFE materials (steel, glass), with the lowest COF (≈0.5) against skin model surfaces being found at 25μg/cm2 lipids. For hydrophobic, low-SFE polymers, the COF was considerably lower (0.4 for PP, 0.16 for PTFE) and relatively independent of the lipid amount, indicating that both the mechanical and surface-chemical properties of the sliders strongly influence the friction behaviour of the skin-model surfaces. Lipid-coated skin models might be a valuable tool not only for tribologists but also for cosmetic chemists, in that they allow the objective study of friction, adhesion and wetting behaviour of liquids and emulsions on simulated skin-surface condition

    Self Organization and a Dynamical Transition in Traffic Flow Models

    Get PDF
    A simple model that describes traffic flow in two dimensions is studied. A sharp {\it jamming transition } is found that separates between the low density dynamical phase in which all cars move at maximal speed and the high density jammed phase in which they are all stuck. Self organization effects in both phases are studied and discussed.Comment: 6 pages, 4 figure

    Validation and Calibration of Models for Reaction-Diffusion Systems

    Full text link
    Space and time scales are not independent in diffusion. In fact, numerical simulations show that different patterns are obtained when space and time steps (Δx\Delta x and Δt\Delta t) are varied independently. On the other hand, anisotropy effects due to the symmetries of the discretization lattice prevent the quantitative calibration of models. We introduce a new class of explicit difference methods for numerical integration of diffusion and reaction-diffusion equations, where the dependence on space and time scales occurs naturally. Numerical solutions approach the exact solution of the continuous diffusion equation for finite Δx\Delta x and Δt\Delta t, if the parameter γN=DΔt/(Δx)2\gamma_N=D \Delta t/(\Delta x)^2 assumes a fixed constant value, where NN is an odd positive integer parametrizing the alghorithm. The error between the solutions of the discrete and the continuous equations goes to zero as (Δx)2(N+2)(\Delta x)^{2(N+2)} and the values of γN\gamma_N are dimension independent. With these new integration methods, anisotropy effects resulting from the finite differences are minimized, defining a standard for validation and calibration of numerical solutions of diffusion and reaction-diffusion equations. Comparison between numerical and analytical solutions of reaction-diffusion equations give global discretization errors of the order of 10610^{-6} in the sup norm. Circular patterns of travelling waves have a maximum relative random deviation from the spherical symmetry of the order of 0.2%, and the standard deviation of the fluctuations around the mean circular wave front is of the order of 10310^{-3}.Comment: 33 pages, 8 figures, to appear in Int. J. Bifurcation and Chao

    Slow-control system for the Hydrogen Cluster-Jet Test Facility at GSI

    Get PDF

    Strong extinction of a far-field laser beam by a single quantum dot

    Full text link
    Through the utilization of index-matched GaAs immersion lens techniques we demonstrate a record extinction (12%) of a far-field focused laser by a single InAs/GaAs quantum dot. This contrast level enables us to report for the first time resonant laser transmission spectroscopy on a single InAs/GaAs quantum dot without the need for phase-sensitive lock-in detection
    corecore