400 research outputs found
Consistent histories for tunneling molecules subject to collisional decoherence
The decoherence of a two-state tunneling molecule, such as a chiral molecule
or ammonia, due to collisions with a buffer gas is analyzed in terms of a
succession of quantum states of the molecule satisfying the conditions for a
consistent family of histories. With the separation in energy of
the levels in the isolated molecule and a decoherence rate
proportional to the rate of collisions, we find for (strong
decoherence) a consistent family in which the molecule flips randomly back and
forth between the left- and right-handed chiral states in a stationary Markov
process. For there is a family in which the molecule
oscillates continuously between the different chiral states, but with
occasional random changes of phase, at a frequency that goes to zero at a phase
transition . This transition is similar to the behavior of the
inversion frequency of ammonia with increasing pressure, but will be difficult
to observe in chiral molecules such as DS. There are additional
consistent families both for and for . In
addition we relate the speed with which chiral information is transferred to
the environment to the rate of decrease of complementary types of information
(e.g., parity information) remaining in the molecule itself.Comment: 18 pages, 3 figure
Information theoretic treatment of tripartite systems and quantum channels
A Holevo measure is used to discuss how much information about a given POVM
on system is present in another system , and how this influences the
presence or absence of information about a different POVM on in a third
system . The main goal is to extend information theorems for mutually
unbiased bases or general bases to arbitrary POVMs, and especially to
generalize "all-or-nothing" theorems about information located in tripartite
systems to the case of \emph{partial information}, in the form of quantitative
inequalities. Some of the inequalities can be viewed as entropic uncertainty
relations that apply in the presence of quantum side information, as in recent
work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also
apply to quantum channels: e.g., if \EC accurately transmits certain POVMs,
the complementary channel \FC will necessarily be noisy for certain other
POVMs. While the inequalities are valid for mixed states of tripartite systems,
restricting to pure states leads to the basis-invariance of the difference
between the information about contained in and .Comment: 21 pages. An earlier version of this paper attempted to prove our
main uncertainty relation, Theorem 5, using the achievability of the Holevo
quantity in a coding task, an approach that ultimately failed because it did
not account for locking of classical correlations, e.g. see [DiVincenzo et
al. PRL. 92, 067902 (2004)]. In the latest version, we use a very different
approach to prove Theorem
Quantum Error Correcting Codes Using Qudit Graph States
Graph states are generalized from qubits to collections of qudits of
arbitrary dimension , and simple graphical methods are used to construct
both additive and nonadditive quantum error correcting codes. Codes of distance
2 saturating the quantum Singleton bound for arbitrarily large and are
constructed using simple graphs, except when is odd and is even.
Computer searches have produced a number of codes with distances 3 and 4, some
previously known and some new. The concept of a stabilizer is extended to
general , and shown to provide a dual representation of an additive graph
code.Comment: Version 4 is almost exactly the same as the published version in
Phys. Rev.
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity
Geometric methods for constructing exact solutions of motion equations with
first order corrections to the heterotic supergravity action
implying a non-trivial Yang-Mills sector and six dimensional, 6-d,
almost-K\"ahler internal spaces are studied. In 10-d spacetimes, general
parametrizations for generic off-diagonal metrics, nonlinear and linear
connections and matter sources, when the equations of motion decouple in very
general forms are considered. This allows us to construct a variety of exact
solutions when the coefficients of fundamental geometric/physical objects
depend on all higher dimensional spacetime coordinates via corresponding
classes of generating and integration functions, generalized effective sources
and integration constants. Such generalized solutions are determined by generic
off-diagonal metrics and nonlinear and/or linear connections. In particular, as
configurations which are warped/compactified to lower dimensions and for
Levi-Civita connections. The corresponding metrics can have (non) Killing
and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain
wall configurations, with possible warping nearly almost-K\"ahler manifolds,
with gravitational and gauge instantons for nonlinear vacuum configurations and
effective polarizations of cosmological and interaction constants encoding
string gravity effects. A series of examples of exact solutions describing
generic off-diagonal supergravity modifications to black hole/ ellipsoid and
solitonic configurations are provided and analyzed. We prove that it is
possible to reproduce the Kerr and other type black solutions in general
relativity (with certain types of string corrections) in 4-d and to generalize
the solutions to non-vacuum configurations in (super) gravity/ string theories.Comment: latex2e, 44 pages with table of content, v2 accepted to EJPC with
minor typos modifications requested by editor and referee and up-dated
reference
National study of adverse reactions after vaccination with bacille Calmette-Guerin
Few large prospective studies of adverse reactions after bacille Calmette-Guérin (BCG) vaccination are available. In a prospective national study of such adverse reactions among 918 subjects (aged 1 day to 54 years) over a 14-month period, 45 vaccinees (5%) reported 53 adverse reactions (23 injection-site abscesses, 14 severe local reactions, 10 cases of lymphadenitis, and 6 other reactions). Only 1% of vaccinees required medical attention. Reactions, particularly lymphadenitis, were significantly less common in infants <6 months old (but not in subjects aged 6 months) vaccinated by trained (vs. untrained) providers (relative risk [RR], 0.24; 95% confidence interval [CI], 0.090.68). Injection-site abscesses (RR, 2.96; 95% CI, 1.117.90) and severe local reactions (RR, 4.93; 95% CI, 1.1121.90) were significantly more common in older vaccinees. Local reactions were more frequently reported by adult females than by adult males (RR, 7.18; 95% CI, 1.5932.45). Adverse reactions were not significantly associated with any currently available vaccine batch, previous receipt of BCG vaccine, or concomitant administration of other vaccines.F. M. Turnbull, P. B. McIntyre, H. M. Achat, H. Wang, R. Stapledon, M. Gold, and M. A. Burges
From Davydov solitons to decoherence-free subspaces: self-consistent propagation of coherent-product states
The self-consistent propagation of generalized [coherent-product]
states and of a class of gaussian density matrix generalizations is examined,
at both zero and finite-temperature, for arbitrary interactions between the
localized lattice (electronic or vibronic) excitations and the phonon modes. It
is shown that in all legitimate cases, the evolution of states reduces
to the disentangled evolution of the component states. The
self-consistency conditions for the latter amount to conditions for
decoherence-free propagation, which complement the Davydov soliton
equations in such a way as to lift the nonlinearity of the evolution for the
on-site degrees of freedom. Although it cannot support Davydov solitons, the
coherent-product ansatz does provide a wide class of exact density-matrix
solutions for the joint evolution of the lattice and phonon bath in compatible
systems. Included are solutions for initial states given as a product of a
[largely arbitrary] lattice state and a thermal equilibrium state of the
phonons. It is also shown that external pumping can produce self-consistent
Frohlich-like effects. A few sample cases of coherent, albeit not solitonic,
propagation are briefly discussed.Comment: revtex3, latex2e; 22 pages, no figs.; to appear in Phys.Rev.E
(Nov.2001
Targets for high repetition rate laser facilities: Needs, challenges and perspectives
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10Ã\u82 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: Dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities
- …
