1,494 research outputs found
Recommended from our members
The evolution of rhythmic cognition: New perspectives and technologies in comparative research
Music is a pervasive phenomenon in human culture, and musical rhythm is virtually present in all musical traditions. Research on the evolution and cognitive underpinnings of rhythm can benefit from a number of approaches. We outline key concepts and definitions, allowing fine-grained analysis of rhythmic cognition in experimental studies. We advocate comparative animal research as a useful approach to answer questions about human music cognition and review experimental evidence from different species. Finally, we suggest future directions for research on the cognitive basis of rhythm. Apart from research in semi-natural setups, possibly allowed by “drum set for chimpanzees” prototypes presented here for the first time, mathematical modeling and systematic use of circular statistics may allow promising advances
Phase Transition and Thermal Order-by-Disorder in the Pyrochlore Quantum Antiferromagnet Er2Ti2O7: a High-Temperature Series Expansion Study
Several rare earth magnetic pyrochlore materials are well modeled by a
spin-1/2 quantum Hamiltonian with anisotropic exchange parameters Js. For the
Er2Ti2O7 material, the Js were recently determined from high-field inelastic
neutron scattering measurements. Here, we perform high-temperature (T) series
expansions to compute the thermodynamic properties of this material using these
Js. Comparison with experimental data show that the model describes the
material very well including the finite temperature phase transition to an
ordered phase at Tc~1.2 K. We show that high temperature expansions give
identical results for different q=0 xy order parameter susceptibilities up to
8th order in \beta=1/T (presumably to all orders in \beta). Conversely, a
non-linear susceptibility related to the 6th power of the order parameter
reveals a thermal order-by-disorder selection of the same non-colinear \psi_2
state as found in Er2Ti2O7.Comment: 12 pages, 4 figure
Magnetic and Thermodynamic Properties of the Collective Paramagnet-Spin Liquid Pyrochlore Tb2Ti2O7
In a recent letter [Phys. Rev. Lett. {\bf 82}, 1012 (1999)] it was found that
the Tb magnetic moments in the TbTiO pyrochlore lattice of
corner-sharing tetrahedra remain in a {\it collective paramagnetic} state down
to 70mK. In this paper we present results from d.c. magnetic susceptibility,
specific heat data, inelastic neutron scattering measurements, and crystal
field calculations that strongly suggest that (1) the Tb ions in
TbTiO possess a moment of approximatively 5, and (2)
the ground state tensor is extremely anisotropic below a temperature of
K, with Ising-like Tb magnetic moments confined to point along
a local cubic direction
dramatically reduces the frustration otherwise present in a Heisenberg
pyrochlore antiferromagnet. The results presented herein underpin the
conceptual difficulty in understanding the microscopic mechanism(s) responsible
for TbTiO failing to develop long-range order at a temperature of
the order of the paramagnetic Curie-Weiss temperature K. We suggest that dipolar interactions and extra perturbative exchange
coupling(s)beyond nearest-neighbors may be responsible for the lack of ordering
of TbTiO.Comment: 8 POSTSCRIPT figures included. Submitted to Physical Review B.
Contact: [email protected]
Non-trivial fixed point structure of the two-dimensional +-J 3-state Potts ferromagnet/spin glass
The fixed point structure of the 2D 3-state random-bond Potts model with a
bimodal (J) distribution of couplings is for the first time fully
determined using numerical renormalization group techniques. Apart from the
pure and T=0 critical fixed points, two other non-trivial fixed points are
found. One is the critical fixed point for the random-bond, but unfrustrated,
ferromagnet. The other is a bicritical fixed point analogous to the bicritical
Nishimori fixed point found in the random-bond frustrated Ising model.
Estimates of the associated critical exponents are given for the various fixed
points of the random-bond Potts model.Comment: 4 pages, 2 eps figures, RevTex 3.0 format requires float and epsfig
macro
Stability of the Bragg glass phase in a layered geometry
We study the stability of the dislocation-free Bragg glass phase in a layered
geometry consisting of coupled parallel planes of d=1+1 vortex lines lying
within each plane, in the presence of impurity disorder. Using renormalization
group, replica variational calculations and physical arguments we show that at
temperatures the 3D Bragg glass phase is always stable for weak
disorder. It undergoes a weakly first order transition into a decoupled 2D
vortex glass upon increase of disorder.Comment: RevTeX. Submitted to EP
Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements
We have measured the low-temperature specific heat of the geometrically
frustrated pyrochlore Heisenberg antiferromagnet Gd2Sn2O7 in zero magnetic
field. The specific heat is found to drop exponentially below approximately 350
mK. This provides evidence for a gapped spin-wave spectrum due to an anisotropy
resulting from single ion effects and long-range dipolar interactions. The data
are well fitted by linear spin-wave theory, ruling out unconventional low
energy magnetic excitations in this system, and allowing a determination of the
pertinent exchange interactions in this material
Orientational Ordering in Spatially Disordered Dipolar Systems
This letter addresses basic questions concerning ferroelectric order in
positionally disordered dipolar materials. Three models distinguished by dipole
vectors which have one, two or three components are studied by computer
simulation. Randomly frozen and dynamically disordered media are considered. It
is shown that ferroelectric order is possible in spatially random systems, but
that its existence is very sensitive to the dipole vector dimensionality and
the motion of the medium. A physical analysis of our results provides
significant insight into the nature of ferroelectric transitions.Comment: 4 pages twocolumn LATEX style. 4 POSTSCRIPT figures available from
[email protected]
On the theory of diamagnetism in granular superconductors
We study a highly disordered network of superconducting granules linked by
weak Josephson junctions in magnetic field and develop a mean field theory for
this problem. The diamagnetic response to a slow {\it variations} of magnetic
field is found to be analogous to the response of a type-II superconductor with
extremely strong pinning. We calculate an effective penetration depth
and critical current and find that both and
are non-zero but are strongly suppressed by frustration.Comment: REVTEX, 12 pages, two Postscript figure
- …
