5,303 research outputs found

    Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    Get PDF
    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data

    Noncommutative geometry inspired black holes in higher dimensions at the LHC

    Full text link
    When embedding models of noncommutative geometry inspired black holes into the peridium of large extra dimensions, it is natural to relate the noncommutativity scale to the higher-dimensional Planck scale. If the Planck scale is of the order of a TeV, noncommutative geometry inspired black holes could become accessible to experiments. In this paper, we present a detailed phenomenological study of the production and decay of these black holes at the Large Hadron Collider (LHC). Noncommutative inspired black holes are relatively cold and can be well described by the microcanonical ensemble during their entire decay. One of the main consequences of the model is the existence of a black hole remnant. The mass of the black hole remnant increases with decreasing mass scale associated with noncommutative and decreasing number of dimensions. The experimental signatures could be quite different from previous studies of black holes and remnants at the LHC since the mass of the remnant could be well above the Planck scale. Although the black hole remnant can be very heavy, and perhaps even charged, it could result in very little activity in the central detectors of the LHC experiments, when compared to the usual anticipated black hole signatures. If this type of noncommutative inspired black hole can be produced and detected, it would result in an additional mass threshold above the Planck scale at which new physics occurs.Comment: 21 pages, 7 figure

    Missing energy in black hole production and decay at the Large Hadron Collider

    Full text link
    Black holes could be produced at the Large Hadron Collider in TeV-scale gravity scenarios. We discuss missing energy mechanisms in black hole production and decay in large extra-dimensional models. In particular, we examine how graviton emission into the bulk could give the black hole enough recoil to leave the brane. Such a perturbation would cause an abrupt termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference

    Microcanonical treatment of black hole decay at the Large Hadron Collider

    Full text link
    This study of corrections to the canonical picture of black hole decay in large extra dimensions examines the effects of back-reaction corrected and microcanonical emission at the LHC. We provide statistical interpretations of the different multiparticle number densities in terms of black hole decay to standard model particles. Provided new heavy particles of mass near the fundamental Planck scale are not discovered, differences between these corrections and thermal decay will be insignificant at the LHC.Comment: small additions and clarifications, format for J. Phys.

    Black Hole Cross Section at the Large Hadron Collider

    Full text link
    Black hole production at the Large Hadron Collider (LHC) was first discussed in 1999. Since then, much work has been performed in predicting the black hole cross section. In light of the start up of the LHC, it is now timely to review the state of these calculations. We review the uncertainties in estimating the black hole cross section in higher dimensions. One would like to make this estimate as precise as possible since the predicted values, or lower limits, obtain for the fundamental Planck scale and number of extra dimensions from experiments will depend directly on the accuracy of the cross section. Based on the current knowledge of the cross section, we give a range of lower limits on the fundamental Planck scale that could be obtained at LHC energies.Comment: 28 pages, 9 figures, LaTeX; added references, corrected typos, expanded discussio

    Teleportation with a uniformly accelerated partner

    Get PDF
    In this work, we give a description of the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Unruh radiation in Rob's frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in non inertial frames.Comment: 7 pages with 4 figures (in revtex4

    Interactions of Heavy Hadrons using Regge Phenomenology and the Quark Gluon String Model

    Full text link
    The search for stable heavy exotic hadrons is a promising way to observe new physics processes at collider experiments. The discovery potential for such particles can be enhanced or suppressed by their interactions with detector material. This paper describes a model for the interactions in matter of stable hadrons containing an exotic quark of charges ±1/3e\pm {1/3}e or ±2/3e\pm {2/3}e using Regge phenomenology and the Quark Gluon String Model. The influence of such interactions on searches at the LHC is also discussed

    Spin Fidelity for Three-qubit Greenberger-Horne-Zeilinger and W States Under Lorentz Transformations

    Full text link
    Constructing the reduced density matrix for a system of three massive spin12-\frac{1}{2} particles described by a wave packet with Gaussian momentum distribution and a spin part in the form of GHZ or W state, the fidelity for the spin part of the system is investigated from the viewpoint of moving observers in the jargon of special relativity. Using a numerical approach, it turns out that by increasing the boost speed, the spin fidelity decreases and reaches to a non-zero asymptotic value that depends on the momentum distribution and the amount of momentum entanglement.Comment: 12pages, 2 figure

    The Partisan Politics of New Social Risks in Advanced Postindustrial Democracies: Social Protection for Labor Market Outsiders

    Get PDF
    Advanced postindustrialization generates numerous challenges for the European social model. Central among these challenges is declining income, unstable employment, and inadequate training of semi- and unskilled workers. In this chapter, I assess the partisan basis of support for social policies that address the needs of these marginalized workers. I specifically consider the impacts of postindustrial cleavages among core constituencies of social democratic parties on the capacity of these parties to pursue inclusive social policies. I argue – and find support for in empirical analyses – that encompassing labor organization is the most important factor in strengthening the ability of left parties to build successful coalitions in support of outsider-friendly policies. I go beyond existing work on the topic by considering the full array of postindustrial cleavages facing left parties, by more fully elaborating why encompassing labor organization is crucial, and by considering a more complete set of measures of outsider policies than extant work. I compare my arguments and findings to important new work that stresses coalition building and partisan politics but minimizes the role of class organization
    corecore