1,811 research outputs found

    Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stokes equations

    Get PDF
    Two-dimensional compressible Reactive Navier-Stokes numerical simulations of intrinsic planar, premixed flame instabilities are performed. The initial growth of a sinusoidally perturbed planar flame is first compared with the predictions of a recent exact linear stability analysis, and it is shown the analysis provides a necessary but not sufficient test problem for validating numerical schemes intended for flame simulations. The long-time nonlinear evolution up to the final nonlinear stationary cellular flame is then examined for numerical domains of increasing width. It is shown that for routinely computationally affordable domain widths, the evolution and final state is, in general, entirely dependent on the width of the domain and choice of numerical boundary conditions. It is also shown that the linear analysis has no relevance to the final nonlinear cell size. When both hydrodynamic and thermal-diffusive effects are important, the evolution consists of a number of symmetry breaking cell splitting and re-merging processes which results in a stationary state of a single very asymmetric cell in the domain, a flame shape which is not predicted by weakly nonlinear evolution equations. Resolution studies are performed and it is found that lower numerical resolutions, typical of those used in previous works, do not give even the qualitatively correct solution in wide domains. We also show that the long-time evolution, including whether or not a stationary state is ever achieved, depends on the choice of the numerical boundary conditions at the inflow and outflow boundaries, and on the numerical domain length and flame Mach number for the types of boundary conditions used in some previous works

    Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers.

    Get PDF
    BackgroundBiofuel use is one of many means of addressing global change caused by anthropogenic release of fossil fuel carbon dioxide into Earth's atmosphere. To make a meaningful reduction in fossil fuel use, bioethanol must be produced from the entire plant rather than only its starch or sugars. Enzymes produced by fungi constitute a significant percentage of the cost of bioethanol production from non-starch (i.e., lignocellulosic) components of energy crops and agricultural residues. We, and others, have reasoned that fungi that naturally deconstruct plant walls may provide the best enzymes for bioconversion of energy crops.ResultsPreviously, we have reported on the isolation of 106 fungi from decaying leaves of Miscanthus and sugarcane (Appl Environ Microbiol 77:5490-504, 2011). Here, we thoroughly analyze 30 of these fungi including those most often found on decaying leaves and stems of these plants, as well as four fungi chosen because they are well-studied for their plant cell wall deconstructing enzymes, for wood decay, or for genetic regulation of plant cell wall deconstruction. We extend our analysis to assess not only their ability over an 8-week period to bioconvert Miscanthus cell walls but also their ability to secrete total protein, to secrete enzymes with the activities of xylanases, exocellulases, endocellulases, and beta-glucosidases, and to remove specific parts of Miscanthus cell walls, that is, glucan, xylan, arabinan, and lignin.ConclusionThis study of fungi that bioconvert energy crops is significant because 30 fungi were studied, because the fungi were isolated from decaying energy grasses, because enzyme activity and removal of plant cell wall components were recorded in addition to biomass conversion, and because the study period was 2 months. Each of these factors make our study the most thorough to date, and we discovered fungi that are significantly superior on all counts to the most widely used, industrial bioconversion fungus, Trichoderma reesei. Many of the best fungi that we found are in taxonomic groups that have not been exploited for industrial bioconversion and the cultures are available from the Centraalbureau voor Schimmelcultures in Utrecht, Netherlands, for all to use

    Isobaric multiplet mass equation in the A=31A=31 T=3/2T = 3/2 quartets

    Full text link
    The observed mass excesses of analog nuclear states with the same mass number AA and isospin TT can be used to test the isobaric multiplet mass equation (IMME), which has, in most cases, been validated to a high degree of precision. A recent measurement [Kankainen et al., Phys. Rev. C 93 041304(R) (2016)] of the ground-state mass of 31^{31}Cl led to a substantial breakdown of the IMME for the lowest A=31,T=3/2A = 31, T = 3/2 quartet. The second-lowest A=31,T=3/2A = 31, T = 3/2 quartet is not complete, due to uncertainties associated with the identity of the 31^{31}S member state. Using a fast 31^{31}Cl beam implanted into a plastic scintillator and a high-purity Ge γ\gamma-ray detection array, γ\gamma rays from the 31^{31}Cl(βγ)(\beta\gamma)31^{31}S sequence were measured. Shell-model calculations using USDB and the recently-developed USDE interactions were performed for comparison. Isospin mixing between the 31^{31}S isobaric analog state (IAS) at 6279.0(6) keV and a nearby state at 6390.2(7) keV was observed. The second T=3/2T = 3/2 state in 31^{31}S was observed at Ex=7050.0(8)E_x = 7050.0(8) keV. Isospin mixing in 31^{31}S does not by itself explain the IMME breakdown in the lowest quartet, but it likely points to similar isospin mixing in the mirror nucleus 31^{31}P, which would result in a perturbation of the 31^{31}P IAS energy. USDB and USDE calculations both predict candidate 31^{31}P states responsible for the mixing in the energy region slightly above Ex=6400E_x = 6400 keV. The second quartet has been completed thanks to the identification of the second 31^{31}S T=3/2T = 3/2 state, and the IMME is validated in this quartet

    Evidence-informed capacity building for setting health priorities in low- and middle-income countries: : A framework and recommendations for further research

    Get PDF
    Priority-setting in health is risky and challenging, particularly in resource-constrained settings. It is not simply a narrow technical exercise, and involves the mobilisation of a wide range of capacities among stakeholders – not only the technical capacity to “do” research in economic evaluations. Using the Individuals, Nodes, Networks and Environment (INNE) framework, we identify those stakeholders, whose capacity needs will vary along the evidence-to-policy continuum. Policymakers and healthcare managers require the capacity to commission and use relevant evidence (including evidence of clinical and cost-effectiveness, and of social values); academics need to understand and respond to decision-makers’ needs to produce relevant research. The health system at all levels will need institutional capacity building to incentivise routine generation and use of evidence. Knowledge brokers, including priority-setting agencies (such as England’s National Institute for Health and Care Excellence, and Health Interventions and Technology Assessment Program, Thailand) and the media can play an important role in facilitating engagement and knowledge transfer between the various actors. Especially at the outset but at every step, it is critical that patients and the public understand that trade-offs are inherent in priority-setting, and careful efforts should be made to engage them, and to hear their views throughout the process. There is thus no single approach to capacity building; rather a spectrum of activities that recognises the roles and skills of all stakeholders. A range of methods, including formal and informal training, networking and engagement, and support through collaboration on projects, should be flexibly employed (and tailored to specific needs of each country) to support institutionalisation of evidence-informed priority-setting. Finally, capacity building should be a two-way process; those who build capacity should also attend to their own capacity development in order to sustain and improve impact

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    South Korea's automotive labour regime, Hyundai Motors’ global production network and trade‐based integration with the European Union

    Get PDF
    This article explores the interrelationship between global production networks(GPNs) and free trade agreements (FTAs) in the South Korean auto industry and its employment relations. It focuses on the production network of the Hyundai Motor Group (HMG) — the third biggest automobile manufacturer in the world — and the FTA between the EU and South Korea. This was the first of the EU’s ‘new generation’ FTAs, which among other things contained provisions designed to protect and promote labour standards. The article’s argument is twofold. First, that HMG’s production network and Korea’s political economy (of which HMG is a crucial part) limited the possibilities for the FTA’s labour provisions to take effect. Second, that the commercial provisions in this same FTA simultaneously eroded HMG’s domestic market and corporate profitability, leading to adverse consequences for auto workers in the more insecure and low-paid jobs. In making this argument, the article advances a multiscalar conceptualization of the labour regime as an analytical intermediary between GPNs and FTAs. It also provides one of the first empirical studies of the EU–South Korea FTA in terms of employment relations, drawing on 105 interviews with trade unions, employer associations, automobile companies and state officials across both parties
    corecore