4,097 research outputs found

    Consideration of radar target glint from ST during OMV rendezvous

    Get PDF
    The nature of radar target glint and the factors upon which it depends when using the Hubble Space Telescope as a radar target is discussed. An analysis of the glint problem using a 35 MHz or 94 MHz radar on the orbital maneuvering vehicle is explored. A strategy for overcoming glint is suggested

    From Classical to Quantum Mechanics: "How to translate physical ideas into mathematical language"

    Full text link
    In this paper, we investigate the connection between Classical and Quantum Mechanics by dividing Quantum Theory in two parts: - General Quantum Axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoint operators and so on) - Quantum Mechanics properly that specifies the Hilbert space, the Heisenberg rule, the free Hamiltonian... We show that General Quantum Axiomatics (up to a supplementary "axiom of classicity") can be used as a non-standard mathematical ground to formulate all the ideas and equations of ordinary Classical Statistical Mechanics. So the question of a "true quantization" with "h" must be seen as an independent problem not directly related with quantum formalism. Moreover, this non-standard formulation of Classical Mechanics exhibits a new kind of operation with no classical counterpart: this operation is related to the "quantization process", and we show why quantization physically depends on group theory (Galileo group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows to map Classical Mechanics into Quantum Mechanics, giving all operators of Quantum Mechanics and Schrodinger equation. Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We find also that this approach gives a natural semi-classical formalism: some exact quantum results are obtained only using classical-like formula. So this procedure has the nice property of enlightening in a more comprehensible way both logical and analytical connection between classical and quantum pictures.Comment: 47 page

    Hot melt adhesive attachment pad

    Get PDF
    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond

    Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    Get PDF
    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.Comment: Published version. 5 pages, 1 figure

    Derivation of the quantum probability law from minimal non-demolition measurement

    Full text link
    One more derivation of the quantum probability rule is presented in order to shed more light on the versatile aspects of this fundamental law. It is shown that the change of state in minimal quantum non-demolition measurement, also known as ideal measurement, implies the probability law in a simple way. Namely, the very requirement of minimal change of state, put in proper mathematical form, gives the well known Lueders formula, which contains the probability rule.Comment: 8 page

    The Phase-Contrast Imaging Instrument at the Matter in Extreme Conditions Endstation at LCLS

    Full text link
    We describe the Phase-Contrast Imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 femtosecond. It was specifically designed for studies relevant to High-Energy-Density Science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community

    Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms

    Full text link
    Conventional quantum mechanics with a complex Hilbert space and the Born Rule is derived from five axioms describing properties of probability distributions for the outcome of measurements. Axioms I,II,III are common to quantum mechanics and hidden variable theories. Axiom IV recognizes a phenomenon, first noted by Turing and von Neumann, in which the increase in entropy resulting from a measurement is reduced by a suitable intermediate measurement. This is shown to be impossible for local hidden variable theories. Axiom IV, together with the first three, almost suffice to deduce the conventional rules but allow some exotic, alternatives such as real or quaternionic quantum mechanics. Axiom V recognizes a property of the distribution of outcomes of random measurements on qubits which holds only in the complex Hilbert space model. It is then shown that the five axioms also imply the conventional rules for all dimensions.Comment: 20 pages, 6 figure
    corecore