8,282 research outputs found
New Directions in Consumer Behaviour Research
Consumer behaviour remains an evolving and fascinating area of research. In this article we highlight some of the current work by Canadian researchers in the areas of enhancing both the quality and application of consumer analysis. The work described below touches upon areas in which not just economic theory and methods, but also the policy process can be improved. The working papers cited here were all presented as part of the principal paper session, “What’s Going on in Consumer Behaviour?†held at the joint meeting of the Canadian Agricultural Economics Society and the Northeastern Agricultural and Resource Economics Association in Halifax, Nova Scotia in June 2004.Food Consumption/Nutrition/Food Safety, Marketing, Research Methods/ Statistical Methods,
Density Functional Theory and Molecular Dynamics Studies on Energetics and Kinetics for Electro-Active Polymers: PVDF and P(VDF-TrFE)
We use first principles methods to study static and dynamical mechanical
properties of the ferroelectric polymer Poly(vinylidene fluoride) (PVDF) and
its copolymer with trifluoro ethylene (TrFE). We use density functional theory
[within the generalized gradient approximation (DFT-GGA)] to calculate
structures and energetics for various crystalline phases for PVDF and
P(VDF-TrFE). We find that the lowest energy phase for PVDF is a non-polar
crystal with a combination of trans (T) and gauche (G) bonds; in the case of
the copolymer the role of the extra (bulkier) F atoms is to stabilize T bonds.
This leads to the higher crystallinity and piezoelectricity observed
experimentally. Using the MSXX first principles-based force field (FF) with
molecular dynamics (MD), we find that the energy barrier necessary to nucleate
a kink (gauche pairs separated by trans bonds) in an all-T crystal is much
lower (14.9 kcal/mol) in P(VDF-TrFE) copolymer than in PVDF (24.8 kcal/mol).
This correlates with the observation that the polar phase of the copolymer
exhibits a solid-solid a transition to a non-polar phase under heating while
PVDF directly melts. We also studied the mobility of an interface between a
polar and non-polar phases under uniaxial stress; we find a lower threshold
stress and a higher mobility in the copolymer as compared with PVDF. Finally,
considering plastic deformation under applied shear, we find that the chains
for P(VDF-TrFE) have a very low resistance to sliding, particularly along the
chain direction. The atomistic characterization of these "unit mechanisms"
provides essential input to mesoscopic or macroscopic models of electro-active
polymers.Comment: 15 pages 9 figures Electro-active polyme
Thermodynamic properties and homogeneous nucleation rates for surface-melted physical clusters
We predict the free energy of van der Waals clusters (Fn) in the surface-melted temperature regime. These free energies are used to predict the bulk chemical potential, surface tension, Tolman length, and vapor pressure of noble gas crystals. Together, these estimates allow us to make definitive tests of the capillarity approximation in classical homogeneous nucleation theory. We find that the capillarity approximation underestimates the nucleation rate by thirty orders of magnitude for argon. The best available experiments are consistent with our calculation of nucleation rate as a function of temperature and pressure. We suggest experimental conditions appropriate for determining quantitative nucleation rates which would be invaluable in guiding further development of the theory. To make the predictions of Fn, we develop the Shellwise Lattice Search (SLS) algorithm to identify isomer fragments and the Linear Group Contribution (LGC) method to estimate the energy of isomers composed of those fragments. Together, SLS/LGC approximates the distribution of isomers which contribute to the configurational partition function (for up to 147-atom clusters). Estimates of the remaining free energy contributions come from a previous paper in this series
Numerical study of resistivity of model disordered three-dimensional metals
We calculate the zero-temperature resistivity of model 3-dimensional
disordered metals described by tight-binding Hamiltonians. Two different
mechanisms of disorder are considered: diagonal and off-diagonal. The
non-equilibrium Green function formalism provides a Landauer-type formula for
the conductance of arbitrary mesoscopic systems. We use this formula to
calculate the resistance of finite-size disordered samples of different
lengths. The resistance averaged over disorder configurations is linear in
sample length and resistivity is found from the coefficient of proportionality.
Two structures are considered: (1) a simple cubic lattice with one s-orbital
per site, (2) a simple cubic lattice with two d-orbitals. For small values of
the disorder strength, our results agree with those obtained from the Boltzmann
equation. Large off-diagonal disorder causes the resistivity to saturate,
whereas increasing diagonal disorder causes the resistivity to increase faster
than the Boltzmann result. The crossover toward localization starts when the
Boltzmann mean free path relative to the lattice constant has a value between
0.5 and 2.0 and is strongly model dependent.Comment: 4 pages, 5 figure
- …
