9,288 research outputs found
An improved negative-mass-instability dispersion relation for high-current modified betatrons
Parallel Load Balancing on Constrained Client-Server Topologies
We study parallel \emph{Load Balancing} protocols for a client-server
distributed model defined as follows.
There is a set \sC of clients and a set \sS of servers where each
client has
(at most) a constant number of requests that must be assigned to
some server. The client set and the server one are connected to each other via
a fixed bipartite graph: the requests of client can only be sent to the
servers in its neighborhood . The goal is to assign every client request
so as to minimize the maximum load of the servers.
In this setting, efficient parallel protocols are available only for dense
topolgies. In particular, a simple symmetric, non-adaptive protocol achieving
constant maximum load has been recently introduced by Becchetti et al
\cite{BCNPT18} for regular dense bipartite graphs. The parallel completion time
is \bigO(\log n) and the overall work is \bigO(n), w.h.p.
Motivated by proximity constraints arising in some client-server systems, we
devise a simple variant of Becchetti et al's protocol \cite{BCNPT18} and we
analyse it over almost-regular bipartite graphs where nodes may have
neighborhoods of small size. In detail, we prove that, w.h.p., this new version
has a cost equivalent to that of Becchetti et al's protocol (in terms of
maximum load, completion time, and work complexity, respectively) on every
almost-regular bipartite graph with degree .
Our analysis significantly departs from that in \cite{BCNPT18} for the
original protocol and requires to cope with non-trivial stochastic-dependence
issues on the random choices of the algorithmic process which are due to the
worst-case, sparse topology of the underlying graph
- …
