804 research outputs found
Social comparison of abilities at an elite college: Feeling outclassed with 1350 SATs
Two studies explored the experience and performance of students at Williams College in three-person groups that were homogeneous or heterogeneous in rated academic ability. In accord with hypotheses from Festinger's (1954) social comparison theory, students in academically homogeneous groups had more positive experiences and performed better on measures of written and video-taped performance. These results differ somewhat from recent studies of peer effects among roommates and from a line of recent social comparison research regarding the effect of exposure to superior others on one's own performance. In addition, students in single-sex groups had higher scores on several self-report and performance measures. Qualifying this finding were additional results showing that women did better in single-sex, while men did better in mixed-sex groups. The overall results were framed in terms of social comparison dynamics
Potential of bio-indication of chironomid communities for assessment of running water quality in Flanders (Belgium)
Predictability of marine nematode biodiversity
In this paper, we investigated: (1) the predictability of different aspects of biodiversity, (2) the effect of spatial autocorrelation on the predictability and (3) the environmental variables affecting the biodiversity of free-living marine nematodes on the Belgian Continental Shelf. An extensive historical database of free-living marine nematodes was employed to model different aspects of biodiversity: species richness, evenness, and taxonomic diversity. Artificial neural networks (ANNs), often considered as “black boxes”, were applied as a modeling tool. Three methods were used to reveal these “black boxes” and to identify the contributions of each environmental variable to the diversity indices. Since spatial autocorrelation is known to introduce bias in spatial analyses, Moran's I was used to test the spatial dependency of the diversity indices and the residuals of the model. The best predictions were made for evenness. Although species richness was quite accurately predicted as well, the residuals indicated a lack of performance of the model. Pure taxonomic diversity shows high spatial variability and is difficult to model. The biodiversity indices show a strong spatial dependency, opposed to the residuals of the models, indicating that the environmental variables explain the spatial variability of the diversity indices adequately. The most important environmental variables structuring evenness are clay and sand fraction, and the minimum annual total suspended matter. Species richness is also affected by the intensity of sand extraction and the amount of gravel of the sea bed
Using formal concept analysis to detect and monitor organised crime
This paper describes some possible uses of Formal Concept Analysis in the detection and monitoring of Organised Crime. After describing FCA and its mathematical basis, the paper suggests, with some simple examples, ways in which FCA and some of its related disciplines can be applied to this problem domain. In particular, the paper proposes FCA-based approaches for finding multiple instances of an activity associated with Organised Crime, finding dependencies between Organised Crime attributes, and finding new indicators of Organised Crime from the analysis of existing data. The paper concludes by suggesting that these approaches will culminate in the creation and implementation of an Organised Crime ‘threat score card’, as part of an overall environmental scanning system that is being developed by the new European ePOOLICE projec
A Flexible Privacy-preserving Framework for Singular Value Decomposition under Internet of Things Environment
The singular value decomposition (SVD) is a widely used matrix factorization
tool which underlies plenty of useful applications, e.g. recommendation system,
abnormal detection and data compression. Under the environment of emerging
Internet of Things (IoT), there would be an increasing demand for data analysis
to better human's lives and create new economic growth points. Moreover, due to
the large scope of IoT, most of the data analysis work should be done in the
network edge, i.e. handled by fog computing. However, the devices which provide
fog computing may not be trustable while the data privacy is often the
significant concern of the IoT application users. Thus, when performing SVD for
data analysis purpose, the privacy of user data should be preserved. Based on
the above reasons, in this paper, we propose a privacy-preserving fog computing
framework for SVD computation. The security and performance analysis shows the
practicability of the proposed framework. Furthermore, since different
applications may utilize the result of SVD operation in different ways, three
applications with different objectives are introduced to show how the framework
could flexibly achieve the purposes of different applications, which indicates
the flexibility of the design.Comment: 24 pages, 4 figure
Experimental evaluation of koala scat persistence and detectability with implications for pellet-based fauna census
Establishing species distribution and population trends are basic requirements in conservation biology, yet acquiring this fundamental information is often difficult. Indirect survey methods that rely on fecal pellets (scats) can overcome some difficulties but present their own challenges. In particular, variation in scat detectability and decay rate can introduce biases. We studied how vegetation communities affect the detectability and decay rate of scats as exemplified by koalas Phascolarctos cinereus: scat detectability was highly and consistently dependent on ground layer complexity (introducing up to 16% non-detection bias); scat decay rates were highly heterogeneous within vegetation communities; exposure of scats to surface water and rain strongly accelerated scat decay rate and finally, invertebrates were found to accelerate scat decay rate markedly, but unpredictably. This last phenomenon may explain the high variability of scat decay rate within a single vegetation community. Methods to decrease biases should be evaluated when planning scat surveys, as the most appropriate method(s) will vary depending on species, scale of survey and landscape characteristics. Detectability and decay biases are both stronger in certain vegetation communities, thus their combined effect is likely to introduce substantial errors in scat surveys and this could result in inappropriate and counterproductive management decisions
From kinetic-structure analysis to engineering crystalline fiber networks in soft materials
10.1039/c2cp43747cPhysical Chemistry Chemical Physics1593313-3319PPCP
The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia
Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies
Exploring the influence of meteorological conditions on the performance of a waste stabilization pond at high altitude with structural equation modeling
Algal photosynthesis plays a key role in the removal mechanisms of waste stabilization ponds (WSPs), which is indicated in the variations of three parameters, dissolved oxygen, pH, and chlorophyll a. These variations can be considerably affected by extreme climatic conditions at high altitude. To investigate these effects, three sampling campaigns were conducted in a high-altitude WSP in Cuenca (Ecuador). From the collected data, the first application of structure equation modeling (SEM) on a pond system was fitted to analyze the influence of high-altitude characteristics on pond performance, especially on the three indicators. Noticeably, air temperature appeared as the highest influencing factors as low temperature at high altitude can greatly decrease the growth rate of microorganisms. Strong wind and large diurnal variations of temperature, 7-20 degrees C, enhanced flow efficiency by improving mixing inside the ponds. Intense solar radiation brought both advantages and disadvantages as it boosted oxygen level during the day but promoted algal overgrowth causing oxygen depletion during the night. From these findings, the authors proposed insightful recommendations for future design, monitoring, and operation of high-altitude WSPs. Moreover, we also recommended SEM to pond engineers as an effective tool for better simulation of such complex systems like WSPs
Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules
Association rules are among the most widely employed data analysis methods in
the field of Data Mining. An association rule is a form of partial implication
between two sets of binary variables. In the most common approach, association
rules are parameterized by a lower bound on their confidence, which is the
empirical conditional probability of their consequent given the antecedent,
and/or by some other parameter bounds such as "support" or deviation from
independence. We study here notions of redundancy among association rules from
a fundamental perspective. We see each transaction in a dataset as an
interpretation (or model) in the propositional logic sense, and consider
existing notions of redundancy, that is, of logical entailment, among
association rules, of the form "any dataset in which this first rule holds must
obey also that second rule, therefore the second is redundant". We discuss
several existing alternative definitions of redundancy between association
rules and provide new characterizations and relationships among them. We show
that the main alternatives we discuss correspond actually to just two variants,
which differ in the treatment of full-confidence implications. For each of
these two notions of redundancy, we provide a sound and complete deduction
calculus, and we show how to construct complete bases (that is,
axiomatizations) of absolutely minimum size in terms of the number of rules. We
explore finally an approach to redundancy with respect to several association
rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape
- …
