17,637 research outputs found
Physical properties of the Apollo 12 lunar fines
Optical and radio frequency electrical properties and grain size analyses of Apollo 11 and 12 lunar soil sample
Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter
Technology utilization data searches
Technology Use Studies Center activities, functions, and services are reported for this period. Transfers and searches are described. Characteristics of TUSC searches are tabulated
Technology utilization
Documentation is presented for selected transfer and impact reports provided to the business community, government agencies, and such other requestors as schools, universities, and health services. Statistical data are also included on the characteristics of the TUSC technical searches
Spin Precession and Avalanches
In many magnetic materials, spin dynamics at short times are dominated by
precessional motion as damping is relatively small. In the limit of no damping
and no thermal noise, we show that for a large enough initial instability, an
avalanche can transition to an ergodic phase where the state is equivalent to
one at finite temperature, often above that for ferromagnetic ordering. This
dynamical nucleation phenomenon is analyzed theoretically. For small finite
damping the high temperature growth front becomes spread out over a large
region. The implications for real materials are discussed.Comment: 4 pages 2 figure
Accretion disks around binary black holes of unequal mass: GRMHD simulations near decoupling
We report on simulations in general relativity of magnetized disks onto black
hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the
systems when they orbit near the binary-disk decoupling radius. We compare
(surface) density profiles, accretion rates (relative to a single, non-spinning
black hole), variability, effective -stress levels and luminosities as
functions of the mass ratio. We treat the disks in two limiting regimes: rapid
radiative cooling and no radiative cooling. The magnetic field lines clearly
reveal jets emerging from both black hole horizons and merging into one common
jet at large distances. The magnetic fields give rise to much stronger shock
heating than the pure hydrodynamic flows, completely alter the disk structure,
and boost accretion rates and luminosities. Accretion streams near the horizons
are among the densest structures; in fact, the 1:10 no-cooling evolution
results in a refilling of the cavity. The typical effective temperature in the
bulk of the disk is yielding characteristic thermal frequencies . These systems are
thus promising targets for many extragalactic optical surveys, such as LSST,
WFIRST, and PanSTARRS.Comment: 29 pages, 23 captioned figures, 3 tables, submitted to PR
Accretion disks around binary black holes of unequal mass: GRMHD simulations of postdecoupling and merger
We report results from simulations in general relativity of magnetized disks
accreting onto merging black hole binaries, starting from relaxed disk initial
data. The simulations feature an effective, rapid radiative cooling scheme as a
limiting case of future treatments with radiative transfer. Here we evolve the
systems after binary-disk decoupling through inspiral and merger, and analyze
the dependence on the binary mass ratio with and . We find that the luminosity associated with local
cooling is larger than the luminosity associated with matter kinetic outflows,
while the electromagnetic (Poynting) luminosity associated with bulk transport
of magnetic field energy is the smallest. The cooling luminosity around merger
is only marginally smaller than that of a single, non-spinning black hole.
Incipient jets are launched independently of the mass ratio, while the same
initial disk accreting on a single non-spinning black hole does not lead to a
jet, as expected. For all mass ratios we see a transient behavior in the
collimated, magnetized outflows lasting after
merger: the outflows become increasingly magnetically dominated and accelerated
to higher velocities, boosting the Poynting luminosity. These sudden changes
can alter the electromagnetic emission across the jet and potentially help
distinguish mergers of black holes in AGNs from single accreting black holes
based on jet morphology alone.Comment: 15 pages, 6 figures, matches published versio
Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex
The bacterial ATPase SecA and protein channel complex SecYEG form the core of an essential protein translocation machinery. The nature of the conformational changes induced by each stage of the hydrolytic cycle of ATP and how they are coupled to protein translocation are not well understood. The structure of the SecA–SecYEG complex revealed a 2-helix-finger (2HF) of SecA in an ideal position to contact the substrate protein and push it through the membrane. Surprisingly, immobilization of this finger at the edge of the protein channel had no effect on translocation, whereas its imposition inside the channel blocked transport. This analysis resolves the stoichiometry of the active complex, demonstrating that after the initiation process translocation requires only one copy each of SecA and SecYEG. The results also have important implications on the mechanism of energy transduction and the power stroke driving transport. Evidently, the 2HF is not a highly mobile transducing element of polypeptide translocation
- …
