1,407 research outputs found
Bistable perception in normal aging: perceptual reversibility and its relation to cognition
The effects of age on the ability to resolve perceptual ambiguity are unknown, though it depends
on fronto-parietal attentional networks known to change with age. We presented the bistable
Necker cube to 24 middle-aged and older adults (OA; 56–78 years) and 20 younger adults (YA;
18–24 years) under passive-viewing and volitional control conditions: Hold one cube percept and
Switch between cube percepts. During passive viewing, OA had longer dominance durations (time
spent on each percept) than YA. In the Hold condition, OA were less able than YA to increase
dominance durations. In the Switch condition, OA and YA did not differ in performance.
Dominance durations in either condition correlated with performance on tests of executive
function mediated by the frontal lobes. Eye movements (fixation deviations) did not differ between
groups. These results suggest that OA’s reduced ability to hold a percept may arise from reduced
selective attention. The lack of correlation of performance between Hold and executive-function
measures suggests at least a partial segregation of underlying mechanisms.Published versionAccepted manuscrip
Artifacts with uneven sampling of red noise
The vast majority of sampling systems operate in a standard way: at each tick
of a fixed-frequency master clock a digitizer reads out a voltage that
corresponds to the value of some physical quantity and translates it into a bit
pattern that is either transmitted, stored, or processed right away. Thus
signal sampling at evenly spaced time intervals is the rule: however this is
not always the case, and uneven sampling is sometimes unavoidable.
While periodic or quasi-periodic uneven sampling of a deterministic signal
can reasonably be expected to produce artifacts, it is much less obvious that
the same happens with noise: here I show that this is indeed the case only for
long-memory noise processes, i.e., power-law noises with . The resulting artifacts are usually a nuisance although they can be
eliminated with a proper processing of the signal samples, but they could also
be turned to advantage and used to encode information.Comment: 5 figure
Proportion Regulation in Globally Coupled Nonlinear Systems
As a model of proportion regulation in differentiation process of biological
system, globally coupled activator-inhibitor systems are studied. Formation and
destabilization of one and two cluster state are predicted analytically.
Numerical simulations show that the proportion of units of clusters is chosen
within a finite range and it is selected depend on the initial condition.Comment: 11 pages (revtex format) and 5 figures (PostScript)
Shift in critical temperature for random spatial permutations with cycle weights
We examine a phase transition in a model of random spatial permutations which
originates in a study of the interacting Bose gas. Permutations are weighted
according to point positions; the low-temperature onset of the appearance of
arbitrarily long cycles is connected to the phase transition of Bose-Einstein
condensates. In our simplified model, point positions are held fixed on the
fully occupied cubic lattice and interactions are expressed as Ewens-type
weights on cycle lengths of permutations. The critical temperature of the
transition to long cycles depends on an interaction-strength parameter
. For weak interactions, the shift in critical temperature is expected
to be linear in with constant of linearity . Using Markov chain
Monte Carlo methods and finite-size scaling, we find .
This finding matches a similar analytical result of Ueltschi and Betz. We also
examine the mean longest cycle length as a fraction of the number of sites in
long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial
permutations.Comment: v2 incorporated reviewer comments. v3 removed two extraneous figures
which appeared at the end of the PDF
Population coding by globally coupled phase oscillators
A system of globally coupled phase oscillators subject to an external input
is considered as a simple model of neural circuits coding external stimulus.
The information coding efficiency of the system in its asynchronous state is
quantified using Fisher information. The effect of coupling and noise on the
information coding efficiency in the stationary state is analyzed. The
relaxation process of the system after the presentation of an external input is
also studied. It is found that the information coding efficiency exhibits a
large transient increase before the system relaxes to the final stationary
state.Comment: 7 pages, 9 figures, revised version, new figures added, to appear in
JPSJ Vol 75, No.
Giant Enhancement of Surface Second Harmonic Generation in BaTiO_3 due to Photorefractive Surface Wave Excitation
We report observation of strongly enhanced surface SHG in BaTiO_3 due to
excitation of a photorefractive surface electromagnetic wave. Surface SH
intensity may reach 10^{-2} of the incident fundamental light intensity.
Angular, crystal orientation and polarization dependencies of this SHG are
presented. Possible applications of this effect in nonlinear surface
spectroscopy are discussed.Comment: 5 pages, 6 figures, submitted to Physical Review Letters on the
3/29/199
Condensation in Globally Coupled Populations of Chaotic Dynamical Systems
The condensation transition, leading to complete mutual synchronization in
large populations of globally coupled chaotic Roessler oscillators, is
investigated. Statistical properties of this transition and the cluster
structure of partially condensed states are analyzed.Comment: 11 pages, 4 figures, revte
A record-driven growth process
We introduce a novel stochastic growth process, the record-driven growth
process, which originates from the analysis of a class of growing networks in a
universal limiting regime. Nodes are added one by one to a network, each node
possessing a quality. The new incoming node connects to the preexisting node
with best quality, that is, with record value for the quality. The emergent
structure is that of a growing network, where groups are formed around record
nodes (nodes endowed with the best intrinsic qualities). Special emphasis is
put on the statistics of leaders (nodes whose degrees are the largest). The
asymptotic probability for a node to be a leader is equal to the Golomb-Dickman
constant omega=0.624329... which arises in problems of combinatorical nature.
This outcome solves the problem of the determination of the record breaking
rate for the sequence of correlated inter-record intervals. The process
exhibits temporal self-similarity in the late-time regime. Connections with the
statistics of the cycles of random permutations, the statistical properties of
randomly broken intervals, and the Kesten variable are given.Comment: 30 pages,5 figures. Minor update
Stable Distributions in Stochastic Fragmentation
We investigate a class of stochastic fragmentation processes involving stable
and unstable fragments. We solve analytically for the fragment length density
and find that a generic algebraic divergence characterizes its small-size tail.
Furthermore, the entire range of acceptable values of decay exponent consistent
with the length conservation can be realized. We show that the stochastic
fragmentation process is non-self-averaging as moments exhibit significant
sample-to-sample fluctuations. Additionally, we find that the distributions of
the moments and of extremal characteristics possess an infinite set of
progressively weaker singularities.Comment: 11 pages, 5 figure
- …
