119 research outputs found
Fission decay of the isoscalar giant quadrupole resonance in 24Mg
The 24Mg(ot, a') 12C+12C reaction was studied by measuring 12C fragments in coincidence with inelastically scattered a-particles at E,=120 MeV. Both 12C fragments were identified using the AE-E technique. The measured angular correlations indicate that the 12Cg~ + 12Cg S decay channel is dominated by decay of L = 2 strength, which yields an integrated fraction of 0.14% of the E2 EWSR strength in comparison with 22.2% of the E2 EWSR strength observed in singles inelastic a-scattering experiments in the same excitation energy region
Character and environmental lability of cyanobacteria-derived dissolved organic matter
Autotrophic dissolved organic matter (DOM) is central to the carbon biogeochemistry of aquatic systems, and the full complexity of autotrophic DOM has not been extensively studied, particularly by high-resolution mass spectrometry (HRMS). Terrestrial DOM tends to dominate HRMS studies in freshwaters due to the propensity of such compounds to ionize by negative mode electrospray, and possibly also because ionizable DOM produced by autotrophy is decreased to low steady-state concentrations by heterotrophic bacteria. In this study, we investigated the character of DOM produced by the widespread cyanobacteriaMicrocystis aeruginosausing high-pressure liquid chromatography-electrospray ionization-high-resolution mass spectrometry.M. aeruginosaproduced thousands of detectable compounds in axenic culture. These compounds were chromatographically resolved and the majority were assigned to aliphatic formulas with a broad polarity range. We found that the DOM produced byM. aeruginosawas highly susceptible to removal by heterotrophic freshwater bacteria, supporting the hypothesis that this autotroph-derived organic material is highly labile and accordingly only seen at low concentrations in natural settings
Identification of dissolved organic matter size components in freshwater and marine environments
Dissolved organic matter (DOM) in the transition zone from freshwater to marine systems was analyzed with a new approach for parameterizing the size distribution of organic compounds. We used size-exclusion chromatography for molecular size analysis and quantified colored DOM (CDOM) on samples from two coastal environments in the Baltic Sea (Roskilde Fjord, Denmark and Gulf of Gdansk, Poland). We applied a Gaussian decomposition method to identify peaks from the chromatograms, providing information beyond bulk size properties. This approach complements methods where DOM is separated into size classes with pre-defined filtering cutoffs, or methods where chromatograms are used only to infer average molecular weight. With this decomposition method, we extracted between three and five peaks from each chromatogram and clustered these into three size groups. To test the applicability of our method, we linked our decomposed peaks with salinity, a major environmental driver in the freshwater-marine continuum. Our results show that when moving from freshwater to low-salinity coastal waters, the observed steep decrease of apparent molecular weight is mostly due to loss of the high-molecular-weight fraction (HMW; >2 kDa) of CDOM. Furthermore, most of the CDOM absorbance in freshwater originates from HMW DOM, whereas the absorbing moieties are more equally distributed along the smaller size range (<2 kDa) in marine samples.Peer reviewe
Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure
Improving Aspects of Empathy and Subjective Performance for HRI through Mirroring Facial Expressions
“Improving Aspects of Empathy and Subjective Performance for HRI through Mirroring Facial Expressions
- …
