446 research outputs found
Abundances in the Galactic bulge: results from planetary nebulae and giant stars
Our understanding of the chemical evolution of the Galactic bulge requires
the determination of abundances in large samples of giant stars and planetary
nebulae (PNe). We discuss PNe abundances in the Galactic bulge and compare
these results with those presented in the literature for giant stars. We
present the largest, high-quality data-set available for PNe in the direction
of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also
consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the
element abundances in a consistent way for all the PNe studied. By comparing
the abundances for the bulge, inner-disk, and LMC, we identify elements that
have not been modified during the evolution of the PN progenitor and can be
used to trace the bulge chemical enrichment history. We then compare the PN
abundances with abundances of bulge field giant. At the metallicity of the
bulge, we find that the abundances of O and Ne are close to the values for the
interstellar medium at the time of the PN progenitor formation, and hence these
elements can be used as tracers of the bulge chemical evolution, in the same
way as S and Ar, which are not expected to be affected by nucleosynthetic
processes during the evolution of the PN progenitors. The PN oxygen abundance
distribution is shifted to lower values by 0.3 dex with respect to the
distribution given by giants. A similar shift appears to occur for Ne and S. We
discuss possible reasons for this PNe-giant discrepancy and conclude that this
is probably due to systematic errors in the abundance derivations in either
giants or PNe (or both). We issue an important warning concerning the use of
absolute abundances in chemical evolution studies.Comment: 23 pages, 15 figures, 16 pages of online material, A&A in pres
The Multitude of Molecular Hydrogen Knots in the Helix Nebula
We present HST/NICMOS imaging of the H_2 2.12 \mu m emission in 5 fields in
the Helix Nebula ranging in radial distance from 250-450" from the central
star. The images reveal arcuate structures with their apexes pointing towards
the central star. Comparison of these images with comparable resolution ground
based images reveals that the molecular gas is more highly clumped than the
ionized gas line tracers. From our images, we determine an average number
density of knots in the molecular gas ranging from 162 knots/arcmin^2 in the
denser regions to 18 knots/arcmin^2 in the lower density outer regions. Using
this new number density, we estimate that the total number of knots in the
Helix to be ~23,000 which is a factor of 6.5 larger than previous estimates.
The total neutral gas mass in the Helix is 0.35 M_\odot assuming a mass of
\~1.5x10^{-5} M_\odot for the individual knots. The H_2 intensity, 5-9x10^{-5}
erg s^{-1} cm^{-2} sr^{-1}, remains relatively constant with projected distance
from the central star suggesting a heating mechanism for the molecular gas that
is distributed almost uniformly in the knots throughout the nebula. The
temperature and H_2 2.12 \mu m intensity of the knots can be approximately
explained by photodissociation regions (PDRs) in the individual knots; however,
theoretical PDR models of PN under-predict the intensities of some knots by a
factor of 10.Comment: 26 pages, 3 tables, 10 figures; AJ accepte
Morphology and Composition of the Helix Nebula
We present new narrow-band filter imagery in H-alpha and [N II] 6584 along
with UV and optical spectrophotometry measurements from 1200 to 9600 Angstroms
of NGC 7293, the Helix Nebula, a nearby, photogenic planetary nebula of large
diameter and low surface brightness. Detailed models of the observable ionized
nebula support the recent claim that the Helix is actually a flattened disk
whose thickness is roughly one-third its diameter with an inner region
containing hot, highly ionized gas which is generally invisible in narrow-band
images. The outer visible ring structure is of lower ionization and temperature
and is brighter because of a thickening in the disk. We also confirm a central
star effective temperature and luminosity of 120,000K and 100L_sun, and we
estimate a lower limit to the nebular mass to be 0.30M_sun. Abundance
measurements indicate the following values: He/H=0.12 (+/-0.017),
O/H=4.60x10^-4 (+/-0.18), C/O=0.87 (+/-0.12), N/O=0.54 (+/-0.14), Ne/O=0.33
(+/-0.04), S/O=3.22x10^-3 (+/-0.26), and Ar/O=6.74x10^-3 (+/-0.76). Our carbon
abundance measurements represent the first of their kind for the Helix Nebula.
The S/O ratio which we derive is anomalously low; such values are found in only
a few other planetary nebulae. The central star properties, the super-solar
values of He/H and N/O, and a solar level of C/O are consistent with a 6.5M_sun
progenitor which underwent three phases of dredge-up and hot bottom burning
before forming the planetary nebula.Comment: 50-page manuscript plus 11 postscript figures. This revised version
corrects a typo in earlier submission. Nothing else has changed. Accepted for
publication in the Astrophysical Journa
High-velocity collimated outflows in planetary nebulae: NGC 6337, He 2-186, and K 4-47
We have obtained narrow-band images and high-resolution spectra of the
planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating
the relation between their main morphological components and several
low-ionization features present in these nebulae. The data suggest that NGC
6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200
km/s. The bright inner ring of the nebula is interpreted to be the "equatorial"
density enhancement. It contains a number of low-ionization knots and outward
tails that we ascribe to dynamical instabilities leading to fragmentation of
the ring or transient density enhancements due to the interaction of the
ionization front with previous density fluctuations in the ISM. The lobes show
a pronounced point-symmetric morphology and two peculiar low-ionization
filaments whose nature remains unclear. The most notable characteristic of He
2-186 is the presence of two high-velocity (higher than 135 km/s) knots from
which an S-shaped lane of emission departs toward the central star. K 4-47 is
composed of a compact core and two high-velocity, low-ionization blobs. We
interpret the substantial broadening of line emission from the blobs as a
signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman
(1987), we derive a shock velocity of 150 km/s and a mild inclination of the
outflow on the plane of the sky. We discuss possible scenarios for the
formation of these nebulae and their low-ionization features. In particular,
the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss
geometries for single AGB stars. Finally, we discuss the possibility that
point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186
are the result of precessing outflows from the central stars.Comment: 16 pages plus 7 figures, ApJ accepted. Also available at
http://www.iac.es/publicaciones/preprints.htm
Peculiarities of electronic heat capacity of thulium cuprates in pseudogap state
Precise calorimetric measurements have been carried out in the 7 - 300 K
temperature range on two ceramic samples of thulium 123 cuprates TmBa2Cu3O6.92
and TmBa2Cu3O6.70. The temperature dependence of the heat capacity was analyzed
in the region where the pseudogap state (PGS) takes place. The lattice
contribution was subtracted from the experimental data. The PGS component has
been obtained by comparing electronic heat capacities of two investigated
samples because the PGS contribution for the 6.92 sample is negligible. The
anomalous behavior of the electronic heat capacity near the temperature
boundary of PGS was found. It is supposed that this anomaly is due to
peculiarities in N(E) function where N is the density of electronic states and
E is the energy of carriers of charge.Comment: 12 pages, 3 Postscript figure
Influence of spin fluctuations on the superconducting transition temperature and resistivity in the t-J model at large N
Spin fluctuations enter the calculation of the superconducting transition
temperature T only in the next-to-leading order (i.e., in O(1/N) of the
1/N expansion of the t-J model. We have calculated these terms and show that
they have only little influence on the value of T obtained in the leading
order O(1/N) in the optimal and overdoped region, i.e., for dopings larger than
the instability towards a flux phase. This result disagrees with recent
spin-fluctuation mediated pairing theories. The discrepancies can be traced
back to the fact that in our case the coupling between electrons and spins is
determined by the t-J model and not adjusted and that the spin susceptibility
is rather broad and structureless and not strongly peaked at low energies as in
spin-fluctuation models. Relating T and transport we show that the
effective interactions in the particle-particle and particle-hole channels are
not simply related within the 1/N expansion by different Fermi surface averages
of the same interactin as in the case of phonons or spin fluctuations. As a
result, we find that large values for T and rather small scattering rates
in the normal state as found in the experiments can easily be reconciled with
each other. We also show that correlation effects heavily suppress transport
relaxation rates relative to quasiparticle relaxation rates in the case of
phonons but not in the case of spin fluctuations.Comment: 16 pages, 10 figures, will appear in Phys. Rev.
A New Look At Carbon Abundances In Planetary Nebulae. IV. Implications For Stellar Nucleosynthesis
This paper is the fourth and final report on a project designed to study
carbon abundances in a sample of planetary nebulae representing a broad range
in progenitor mass and metallicity. We present newly acquired optical
spectrophotometric data for three Galactic planetary nebulae IC 418, NGC 2392,
and NGC 3242 and combine them with UV data from the IUE Final Archive for
identical positions in each nebula to determine accurate abundances of He, C,
N, O, and Ne at one or more locations in each object. We then collect
abundances of these elements for the entire sample and compare them with
theoretical predictions of planetary nebula abundances from a grid of
intermediate mass star models. We find some consistency between observations
and theory, lending modest support to our current understanding of
nucleosynthesis in stars below 8 M_o in birth mass. Overall, we believe that
observed abundances agree with theoretical predictions to well within an order
of magnitude but probably not better than within a factor of 2 or 3. But even
this level of consistency between observation and theory enhances the validity
of published intermediate-mass stellar yields of carbon and nitrogen in the
study of the abundance evolution of these elements.Comment: 41 pages, 11 figures. Accepted for publication in the Astrophysical
Journa
A close look into the carbon disk at the core of the planetary nebula CPD-568032
We present high spatial resolution observations of the dusty core of the
Planetary Nebula with Wolf-Rayet central star CPD-568032. These observations
were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode
providing a typical 300 mas resolution and in interferometric mode using
UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. The
visible HST images exhibit a complex multilobal geometry dominated by faint
lobes. The farthest structures are located at 7" from the star. The mid-IR
environment of CPD-568032 is dominated by a compact source, barely resolved by
a single UT telescope in a 8.7 micron filter. The infrared core is almost fully
resolved with the three 40-45m projected baselines ranging from -5 to 51 degree
but smooth oscillating fringes at low level have been detected in spectrally
dispersed visibilities. This clear signal is interpreted in terms of a ring
structure which would define the bright inner rim of the equatorial disk.
Geometric models allowed us to derive the main geometrical parameters of the
disk. For instance, a reasonably good fit is reached with an achromatic and
elliptical truncated Gaussian with a radius of 97+/-11 AU, an inclination of
28+/-7 degree and a PA for the major axis at 345+/-7 degree. Furthermore, we
performed some radiative transfer modeling aimed at further constraining the
geometry and mass content of the disk, by taking into account the MIDI
dispersed visibilities, spectra, and the large aperture SED of the source.
These models show that the disk is mostly optically thin in the N band and
highly flared.Comment: Paper accepted in A&
Evidence for coexistence of the superconducting gap and the pseudo - gap in Bi-2212 from intrinsic tunneling spectroscopy
We present intrinsic tunneling spectroscopy measurements on small
BiSrCaCuO mesas. The tunnel conductance curves show both
sharp peaks at the superconducting gap voltage and broad humps representing the
-axis pseudo-gap. The superconducting gap vanishes at , while the
pseudo-gap exists both above and below . Our observation implies that the
superconducting and pseudo-gaps represent different coexisting phenomena.Comment: 5 pages, 4 figure
Far-UV Spectroscopic Analyses of Four Central Stars of Planetary Nebulae
We analyze the Far-UV/UV spectra of four central stars of planetary nebulae
with strong wind features -- NGC 2371, Abell 78, IC 4776 and NGC 1535, and
derive their photospheric and wind parameters by modeling high-resolution FUSE
(Far-Ultraviolet Spectroscopic Explorer) data in the Far-UV and HST-STIS and
IUE data in the UV with spherical non-LTE line-blanketed model atmospheres.
Abell 78 is a hydrogen-deficient transitional [WR]-PG 1159 object, and we find
NGC 2371 to be in the same stage, both migrating from the constant-luminosity
phase to the white dwarf cooling sequence with Teff ~= 120 kK, Mdot ~= 5x10^-8
Msun/yr. NGC 1535 is a ``hydrogen-rich'' O(H) CSPN, and the exact nature of IC
4776 is ambiguous, although it appears to be helium burning. Both objects lie
on the constant-luminosity branch of post-AGB evolution and have Teff ~= 65 kK,
Mdot ~= 1x10^-8 Msun/yr. Thus, both the H-rich and H-deficient channels of PN
evolution are represented in our sample. We also investigate the effects of
including higher ionization stages of iron (up to FeX) in the model atmosphere
calculations of these hot objects (usually neglected in previous analyses), and
find iron to be a useful diagnostic of the stellar parameters in some cases.
The Far-UV spectra of all four objects show evidence of hot (T ~ 300 K)
molecular hydrogen in their circumstellar environments.Comment: 38 pages, 8 figures (6 color). Accepted for publication in Ap
- …
