497 research outputs found

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    Towards an understanding of isospin violation in pion-nucleon scattering

    Get PDF
    We investigate isospin breaking in low-energy pion-nucleon scattering in the framework of chiral perturbation theory. This work extends the systematic analysis of [1] to the energy range above threshold. Various relations, which identically vanish in the limit of isospin symmetry, are used to quantify isospin breaking effects. We study the energy dependence of the S- and P-wave projections of these ratios and find dramatic effects in the S-waves of those two relations which are given in terms of isoscalar quantities only. This effect drops rather quickly with growing center-of-mass energy.Comment: 12 pp, REVTeX, 8 figs, FZJ-IKP(TH)-2000-2

    Low Energy Pion-Hyperon Interaction

    Full text link
    We study the low energy pion-hyperon interaction considering effective non-linear chiral invariant Lagrangians including pions, rho mesons, hyperons and corresponding resonances. Then we calculate the S- and P-wave phase-shifts, total cross sections, angular distributions and polarizations for the momentum in the center-of-mass frame up to k=400 MeV. With these results we discuss the CP violation in the csi-> pi-lambda and omega-> pi-csi weak decays.Comment: 10 pages, 10 figure

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this first part, we present the results of the pion-induced reactions and the extracted resonance and background properties with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.

    \pi\pi, K\pi and \pi N potential scattering and a prediction of a narrow \sigma meson resonance

    Full text link
    Low energy scattering and bound state properties of the \pi N, \pi\pi and K\pi systems are studied as coupled channel problems using inversion potentials of phase shift data. In a first step we apply the potential model to explain recent measurements of pionic hydrogen shift and width. Secondly, predictions of the model for pionium lifetime and shift confirm a well known and widely used effective range expression. Thirdly, as extension of this confirmation, we predict an unexpected medium effect of the pionium lifetime which shortens by several orders of magnitude. The \sigma meson shows a narrow resonance structure as a function of the medium modified mass with the implication of being essentially energy independent. Similarly, we see this medium resonance effect realized for the K\pi system. To support our findings we present also results for the \rho meson and the \Delta(1232) resonance.Comment: 42 pages, 17 PS figures, REFTeX, epsfig.sty needed, submitted to Phys. Re

    Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model

    Get PDF
    A microscopic calculation of Compton scattering on the nucleon is presented which encompasses the lowest energies -- yielding nucleon polarizabilities -- and extends to energies of the order of 600 MeV. We have used the covariant "Dressed K-Matrix Model" obeying the symmetry properties which are appropriate in the different energy regimes. In particular, crossing symmetry, gauge invariance and unitarity are satisfied. The extent of violation of analyticity (causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published in Phys. Rev. C, more extensive comparison with data for Compton scattering, all results unchange

    What is the structure of the Roper resonance?

    Get PDF
    We investigate the structure of the nucleon resonance N^*(1440) (Roper) within a coupled-channel meson exchange model for pion-nucleon scattering. The coupling to pipiN states is realized effectively by the coupling to the sigmaN, piDelta and rhoN channels. The interaction within and between these channels is derived from an effective Lagrangian based on a chirally symmetric Lagrangian, which is supplemented by well known terms for the coupling of the Delta isobar, the omega meson and the 'sigma', which is the name given here to the strong correlation of two pions in the scalar-isoscalar channel. In this model the Roper resonance can be described by meson-baryon dynamics alone; no genuine N^*(1440) (3 quark) resonance is needed in order to fit piN phase shifts and inelasticities.Comment: 55 pages, 14 figure

    Solution of the Bethe-Salpeter equation for pion-nucleon scattering

    Get PDF
    A relativistic description of pion-nucleon scattering based on the four-dimensional Bethe-Salpeter equation is presented. The kernel of the equation consists of s- and u-channel nucleon and delta pole diagrams, as well as rho and sigma exchange in the t-channel. The Bethe-Salpeter equation is solved by means of a Wick rotation, and good fits are obtained to the s- and p-wave phase shifts up to 360 MeV pion laboratory energy. The coupling constants determined by the fits are consistent with the commonly accepted values in the literature.Comment: 34 pages, RevTeX; 7 figures. Several references added, a few typos corrected. Accepted for publication in Physical Review
    corecore