14,105 research outputs found
Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: A single-crystal neutron diffraction study
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system
that can be described in terms of Tomonaga-Luttinger liquid physics. This is
explored in the present study where the magnetic field-temperature phase
diagram is thoroughly established up to 12 T using single-crystal neutron
diffraction. The transition from the N\'eel phase to the incommensurate
longitudinal spin density wave (LSDW) phase through a first-order transition,
as well as the critical exponents associated with the paramagnetic to ordered
phase transitions, and the magnetic order both in the N\'eel and in the LSDW
phase are determined, thus providing a stringent test for the theory.Comment: 17 pages with 15 figure
Real time decoherence of Landau and Levitov quasi-particles in quantum Hall edge channels
Quantum Hall edge channels at integer filling factor provide a unique
test-bench to understand decoherence and relaxation of single electronic
excitations in a ballistic quantum conductor. In this Letter, we obtain a full
visualization of the decoherence scenario of energy (Landau) and time (Levitov)
resolved single electron excitations at filling factor . We show that
the Landau excitation exhibits a fast relaxation followed by spin-charge
separation whereas the Levitov excitation only experiences spin-charge
separation. We finally suggest to use Hong-Ou-Mandel type experiments to probe
specific signatures of these different scenarios.Comment: 14 pages, 8 figure
Cooperative ordering of gapped and gapless spin networks in CuFeGeO
The unusual magnetic properties of a novel low-dimensional quantum
ferrimagnet CuFeGeO are studied using bulk methods, neutron
diffraction and inelastic neutron scattering. It is shown that this material
can be described in terms of two low-dimensional quantum spin subsystems, one
gapped and the other gapless, characterized by two distinct energy scales.
Long-range magnetic ordering observed at low temperatures is a cooperative
phenomenon caused by weak coupling of these two spin networks.Comment: 4 pages, 4 figure
Neutron diffraction investigation of the H-T phase diagram above the longitudinal incommensurate phase of BaCo2V2O8
The quasi-one-dimensional antiferromagnetic Ising-like compound BaCo2V2O8 has
been shown to be describable by the Tomonaga-Luttinger liquid theory in its
gapless phase induced by a magnetic field applied along the Ising axis. Above
3.9 T, this leads to an exotic field-induced low-temperature magnetic order,
made of a longitudinal incommensurate spin-density wave, stabilized by weak
interchain interactions. By single-crystal neutron diffraction we explore the
destabilization of this phase at a higher magnetic field. We evidence a
transition at around 8.5 T towards a more conventional magnetic structure with
antiferromagnetic components in the plane perpendicular to the magnetic field.
The phase diagram boundaries and the nature of this second field-induced phase
are discussed with respect to previous results obtained by means of nuclear
magnetic resonance and electron spin resonance, and in the framework of the
simple model based on the Tomonaga-Luttinger liquid theory, which obviously has
to be refined in this complex system.Comment: 7 pages, 5 figure
Linear instability implies nonlinear instability for various types of viscous boundary layers
Raman scattering through surfaces having biaxial symmetry
Magnetic Raman scattering in two-leg spin ladder materials and the
relationship between the anisotropic exchange integrals are analyzed by P. J.
Freitas and R. R. P. Singh in Phys. Rev. B, {\bf 62}, 14113 (2000). The angular
dependence of the two-magnon scattering is shown to provide information for the
magnetic anisotropy in the Sr_14Cu_24O_41 and La_6Ca_8Cu_24O_41 compounds. We
point out that the experimental results of polarized Raman measurements at
arbitrary angles with respect to the crystal axes have to be corrected for the
light ellipticity induced inside the optically anisotropic crystals. We refer
quantitatively to the case of Sr_14Cu_24O_41 and discuss potential implications
for spectroscopic studies in other materials with strong anisotropy.Comment: To be published as a Comment in Phys. Rev.
Electron quantum optics : partitioning electrons one by one
We have realized a quantum optics like Hanbury Brown and Twiss (HBT)
experiment by partitioning, on an electronic beam-splitter, single elementary
electronic excitations produced one by one by an on-demand emitter. We show
that the measurement of the output currents correlations in the HBT geometry
provides a direct counting, at the single charge level, of the elementary
excitations (electron/hole pairs) generated by the emitter at each cycle. We
observe the antibunching of low energy excitations emitted by the source with
thermal excitations of the Fermi sea already present in the input leads of the
splitter, which suppresses their contribution to the partition noise. This
effect is used to probe the energy distribution of the emitted wave-packets.Comment: 5 pages, 4 figure
Half-ordered state in the anisotropic Haldane-gap antiferromagnet NDMAP
Neutron diffraction experiments performed on the Haldane gap material NDMAP
in high magnetic fields applied at an angle to the principal anisotropy axes
reveal two consecutive field-induced phase transitions. The low-field phase is
the gapped Haldane state, while at high fields the system exhibits
3-dimensional long-range Neel order. In a peculiar phase found at intermediate
fields only half of all the spin chains participate in the long-range ordering,
while the other half remains disordered and gapped.Comment: 4 pages, 2 figures, submitted to Phys. Rev.
- …
