168 research outputs found
Interpretation of Photoemission Spectra of (TaSe4)2I as Evidence of Charge Density Wave Fluctuations
The competition between different and unusual effects in
quasi-one-dimensional conductors makes the direct interpretation of
experimental measurements of these materials both difficult and interesting. We
consider evidence for the existence of large charge-density-wave fluctuations
in the conducting phase of the Peierls insulator (TaSe4)2I, by comparing the
predictions of a simple Lee, Rice and Anderson theory for such a system with
recent angle-resolved photoemission spectra. The agreement obtained suggests
that many of the unusual features of these spectra may be explained in this
way. This view of the system is contrasted with the behaviour expected of a
Luttinger liquid.Comment: Archive copy of published paper. 19 pages, 12 figures, uses IOP
macro
What is the impact of food reformulation on individual’s behaviour, nutrient intakes and health status? A systematic review of empirical evidence
Food reformulation aimed at improving the nutritional properties of food products has long been viewed as a promising public health strategy to tackle poor nutrition and obesity. This paper presents a review of the empirical evidence (i.e. modelling studies were excluded) on the impact of food reformulation on food choices, nutrient intakes and health status, based on a systematic search of Medline, Embase, Global Health, and sources of grey literature. Fifty-nine studies (in 35 papers) were included in the review. Most studies examined food choices (n=27) and dietary intakes (n=26). The nutrients most frequently studied were sodium (n=32) and trans-fatty acids (TFA, n=13). Reformulated products were generally accepted and purchased by consumers, which led to improved nutrient intakes in 73% of studies. We also conducted two meta-analyses showing, respectively, a -0.57g/day [95%CI -0.89, -0.25] reduction in salt intake, and an effect size for TFA intake reduction of -1.2, 95% [CI -1.79, -0.61]. Only six studies examined effects on health outcomes, with studies on TFA reformulation showing overall improvement in cardiovascular risk factors. For other nutrients, it remains unclear whether observed improvements in food choices or nutrient intakes may have led to an improvement in health outcomes
Structural and Luminescence Properties of Silica-Based Hybrids Containing New Silylated-Diketonato Europium(III) Complex
A new betadiketonate ligand displaying a trimethoxysilyl group as grafting function and a diketone moiety as complexing site (TTA-Si = 4,4,4-trifluoro-2-(3-trimethoxysilyl)propyl)-1-3-butanedione (C4H3S)COCH[(CH2)3Si(OCH3)3]COCF3) and its highly luminescent europium(III) complex [Eu(TTA-Si)3] have been synthesized and fully characterized. Luminescent silica-based hybrids have been prepared as well with this new complex grafted on the surface of dense silica nanoparticles (28 (+/-3 nm) or on mesoporous
silica particles. The covalent bonding of Eu(TTA-Si)3 inside the core of uniform silica
nanoparticles (40 (+/- 5 nm) was also achieved. Luminescence properties are discussed in relation to the europium chemical environment involved in each of the three hybrids. The general methodology proposed allowed high grafting ratios and overcame chelate release and tendency to agglomeration, and it could be applied to any silica matrix (in the core or at the surface, nanosized or not, dense or mesoporous) and therefore numerous applications such as luminescent markers and luminophors could be foreseen
Financial difficulties but not other types of recent negative life events show strong interactions with 5-HTTLPR genotype in the development of depressive symptoms
Several studies indicate that 5-HTTLPR mediates the effect of childhood adversity in the development of depression, while results are contradictory for recent negative life events. For childhood adversity the interaction with genotype is strongest for sexual abuse, but not for other types of childhood maltreatment; however, possible interactions with specific recent life events have not been investigated separately. The aim of our study was to investigate the effect of four distinct types of recent life events in the development of depressive symptoms in a large community sample. Interaction between different types of recent life events measured by the List of Threatening Experiences and the 5-HTTLPR genotype on current depression measured by the depression subscale and additional items of the Brief Symptom Inventory was investigated in 2588 subjects in Manchester and Budapest. Only a nominal interaction was found between life events overall and 5-HTTLPR on depression, which failed to survive correction for multiple testing. However, subcategorising life events into four categories showed a robust interaction between financial difficulties and the 5-HTTLPR genotype, and a weaker interaction in the case of illness/injury. No interaction effect for the other two life event categories was present. We investigated a general non-representative sample in a cross-sectional approach. Depressive symptoms and life event evaluations were self-reported. The 5-HTTLPR polymorphism showed a differential interaction pattern with different types of recent life events, with the strongest interaction effects of financial difficulties on depressive symptoms. This specificity of interaction with only particular types of life events may help to explain previous contradictory findings
ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3*
We present the analysis of the hot-Jupiter KELT-7 b using transmission and emission spectroscopy from the Hubble Space Telescope, both taken with the Wide Field Camera 3. Our study uncovers a rich transmission spectrum that is consistent with a cloud-free atmosphere and suggests the presence of H_{2}O and H^{−}. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature–pressure profile, collision induced absorption, and H^{-}. KELT-7 b had also been studied with other space-based instruments and we explore the effects of introducing these additional data sets. Further observations with Hubble, or the next generation of space-based telescopes, are needed to allow for the optical opacity source in transmission to be confirmed and for molecular features to be disentangled in emission
JWST-TST DREAMS : Sulfur dioxide in the atmosphere of the Neptune-mass planet HAT-P-26 b from NIRSpec G395H transmission spectroscopy
Funding: L.A. is supported by Cornell University College of Arts & Sciences Klarman Fellowship. H.R.W. was funded by UK Research and Innovation (UKRI) framework under the UK government’s Horizon Europe funding guarantee for an ERC Starter Grant (grant No. EP/Y006313/1). R.J.M. is supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51513.001, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. D.R.L. acknowledges support from NASA under award No. 80GSFC24M0006. C.I.C. acknowledges support by NASA Headquarters through an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by ORAU through a contract with NASA.We present the James Webb Space Telescope (JWST) transmission spectrum of the exoplanet HAT-P-26 b (18.6 M⊕, 6.33 R⊕), based on a single transit observed with the JWST NIRSpec G395H grating. We detect water vapor (ln = 4.1), carbon dioxide (ln = 85.6), and sulfur dioxide (ln = 13.5) with high confidence, along with marginal indications for hydrogen sulfide and carbon monoxide (ln < 0.5). The detection of SO2 in a warm super-Neptune-sized exoplanet (RP ∼ 6 R⊕) bridges the gap between previous detections in hot Jupiters and sub-Neptunes, highlighting the role of disequilibrium photochemistry across a broad range of exoplanet atmospheres, including those cooler than 1000 K. Our precise measurements of carbon, oxygen, and sulfur indicate an atmospheric metallicity of ∼10× solar and a subsolar C/O ratio. Retrieved molecular abundances are consistent within 2σ with predictions from self-consistent models including photochemistry. The elevated CO2 abundance and possible H2S signal may also reflect sensitivities to the thermal structure, cloud properties, or additional disequilibrium processes such as vertical mixing. We compare the SO2 abundance in HAT-P-26 b with that of 10 other JWST-observed giant exoplanets, and find a correlation with atmospheric metallicity. The trend is consistent with the prediction from I. J. M. Crossfield, showing a steep rise in SO2 abundance at low metallicities, and a more gradual increase beyond 30× solar. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Peer reviewe
JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b
Clouds are prevalent in many of the exoplanet atmospheres that have been
observed to date. For transiting exoplanets, we know if clouds are present
because they mute spectral features and cause wavelength-dependent scattering.
While the exact composition of these clouds is largely unknown, this
information is vital to understanding the chemistry and energy budget of
planetary atmospheres. In this work, we observe one transit of the hot Jupiter
WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12
m. These wavelengths allow us to probe absorption due to the
vibrational modes of various predicted cloud species. Our transmission spectrum
shows additional opacity centered at 8.6 m, and detailed atmospheric
modeling and retrievals identify this feature as SiO(s) (quartz) clouds.
The SiO(s) clouds model is preferred at 3.5-4.2 versus a cloud-free
model and at 2.6 versus a generic aerosol prescription. We find the
SiO(s) clouds are comprised of small m particles,
which extend to high altitudes in the atmosphere. The atmosphere also shows a
depletion of HO, a finding consistent with the formation of
high-temperature aerosols from oxygen-rich species. This work is part of a
series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we
will use Guaranteed Time Observations to perform Deep Reconnaissance of
Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ
JWST-TST DREAMS : quartz clouds in the atmosphere of WASP-17b
Funding: D.G. acknowledges funding from the UKRI STFC Consolidated grant No. ST/V000454/1. H.R.W. was funded by UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee (grant No. EP/Y006313/1). A.G. acknowledges support from the Robert R. Shrock Graduate Fellowship. J.G. acknowledges funding from SERB research grant No. SRG/2022/000727. R.J.M. is supported by NASA through the NASA Hubble Fellowship grant No. HST-HF2-51513.001, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. We acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing high performance computing resources that have contributed to the research results reported within this paper. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. N.E.B. acknowledges support from NASA's Interdisciplinary Consortia for Astrobiology Research (grant No. NNH19ZDA001N-ICAR) under award number 19-ICAR19_2-0041.Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 μm. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μm, and detailed atmospheric modeling and retrievals identify this feature as SiO2(s) (quartz) clouds. The SiO2(s) clouds model is preferred at 3.5-4.2σ versus a cloud-free model and at 2.6σ versus a generic aerosol prescription. We find the SiO2(s) clouds are comprised of small ~0.01 μm particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Peer reviewe
- …
