288 research outputs found
Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?
Planets less massive than about 10 MEarth are expected to have no massive
H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass)
provided they formed beyond the snowline of protoplanetary disks. Due to inward
migration, such planets could be found at any distance between their formation
site and the star. If migration stops within the habitable zone, this will
produce a new kind of planets, called Ocean-Planets. Ocean-planets typically
consist in a silicate core, surrounded by a thick ice mantle, itself covered by
a 100 km deep ocean. The existence of ocean-planets raises important
astrobiological questions: Can life originate on such body, in the absence of
continent and ocean-silicate interfaces? What would be the nature of the
atmosphere and the geochemical cycles ?
In this work, we address the fate of Hot Ocean-Planets produced when
migration ends at a closer distance. In this case the liquid/gas interface can
disappear, and the hot H2O envelope is made of a supercritical fluid. Although
we do not expect these bodies to harbor life, their detection and
identification as water-rich planets would give us insight as to the abundance
of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
Orbital and superorbital variability of LS I +61 303 at low radio frequencies with GMRT and LOFAR
LS I +61 303 is a gamma-ray binary that exhibits an outburst at GHz
frequencies each orbital cycle of 26.5 d and a superorbital
modulation with a period of 4.6 yr. We have performed a detailed
study of the low-frequency radio emission of LS I +61 303 by analysing all the
archival GMRT data at 150, 235 and 610 MHz, and conducting regular LOFAR
observations within the Radio Sky Monitor (RSM) at 150 MHz. We have detected
the source for the first time at 150 MHz, which is also the first detection of
a gamma-ray binary at such a low frequency. We have obtained the light-curves
of the source at 150, 235 and 610 MHz, all of them showing orbital modulation.
The light-curves at 235 and 610 MHz also show the existence of superorbital
variability. A comparison with contemporaneous 15-GHz data shows remarkable
differences with these light-curves. At 15 GHz we see clear outbursts, whereas
at low frequencies we see variability with wide maxima. The light-curve at 235
MHz seems to be anticorrelated with the one at 610 MHz, implying a shift of
0.5 orbital phases in the maxima. We model the shifts between the maxima
at different frequencies as due to changes in the physical parameters of the
emitting region assuming either free-free absorption or synchrotron
self-absorption, obtaining expansion velocities for this region close to the
stellar wind velocity with both mechanisms.Comment: 12 pages, 10 figures, accepted for publication in MNRA
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
Context. Observing Jupiter's synchrotron emission from the Earth remains
today the sole method to scrutinize the distribution and dynamical behavior of
the ultra energetic electrons magnetically trapped around the planet (because
in-situ particle data are limited in the inner magnetosphere). Aims. We perform
the first resolved and low-frequency imaging of the synchrotron emission with
LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV)
which map a broad region of Jupiter's inner magnetosphere. Methods (see article
for complete abstract) Results. The first resolved images of Jupiter's
radiation belts at 127-172 MHz are obtained along with total integrated flux
densities. They are compared with previous observations at higher frequencies
and show a larger extent of the synchrotron emission source (>=4 ). The
asymmetry and the dynamic of east-west emission peaks are measured and the
presence of a hot spot at lambda_III=230 {\deg} 25 {\deg}. Spectral flux
density measurements are on the low side of previous (unresolved) ones,
suggesting a low-frequency turnover and/or time variations of the emission
spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The
observations at 127 MHz depict an extended emission up to ~4-5 planetary radii.
The similarities with high frequency results reinforce the conclusion that: i)
the magnetic field morphology primarily shapes the brightness distribution of
the emission and ii) the radiating electrons are likely radially and
latitudinally distributed inside about 2 . Nonetheless, the larger extent
of the brightness combined with the overall lower flux density, yields new
information on Jupiter's electron distribution, that may shed light on the
origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) -
abstract edited because of limited character
LOFAR tied-array imaging and spectroscopy of solar S bursts
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes.
Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms.
Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second.
Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere.
Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
LOFAR Sparse Image Reconstruction
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital
phased array interferometer with multiple antennas distributed in Europe. It
provides discrete sets of Fourier components of the sky brightness. Recovering
the original brightness distribution with aperture synthesis forms an inverse
problem that can be solved by various deconvolution and minimization methods
Aims. Recent papers have established a clear link between the discrete nature
of radio interferometry measurement and the "compressed sensing" (CS) theory,
which supports sparse reconstruction methods to form an image from the measured
visibilities. Empowered by proximal theory, CS offers a sound framework for
efficient global minimization and sparse data representation using fast
algorithms. Combined with instrumental direction-dependent effects (DDE) in the
scope of a real instrument, we developed and validated a new method based on
this framework Methods. We implemented a sparse reconstruction method in the
standard LOFAR imaging tool and compared the photometric and resolution
performance of this new imager with that of CLEAN-based methods (CLEAN and
MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse
reconstruction performs as well as CLEAN in recovering the flux of point
sources; ii) performs much better on extended objects (the root mean square
error is reduced by a factor of up to 10); and iii) provides a solution with an
effective angular resolution 2-3 times better than the CLEAN images.
Conclusions. Sparse recovery gives a correct photometry on high dynamic and
wide-field images and improved realistic structures of extended sources (of
simulated and real LOFAR datasets). This sparse reconstruction method is
compatible with modern interferometric imagers that handle DDE corrections (A-
and W-projections) required for current and future instruments such as LOFAR
and SKAComment: Published in A&A, 19 pages, 9 figure
The LOFAR Tied-Array All-Sky Survey: Timing of 35 radio pulsars and an overview of the properties of the LOFAR pulsar discoveries
The LOFAR Tied-Array All-Sky Survey (LOTAAS) is the most sensitive untargeted radio pulsar survey performed at low radio frequencies (119−151 MHz) to date and has discovered 76 new radio pulsars, including the 23.5-s pulsar J0250+5854, which up until recently was the slowest spinning radio pulsar known. In this paper, we report on the timing solutions of 35 pulsars discovered by LOTAAS, which include a nulling pulsar and a mildly recycled pulsar, and thereby complete the full timing analysis of the LOTAAS pulsar discoveries. We give an overview of the findings from the full LOTAAS sample of 76 pulsars, discussing their pulse profiles, radio spectra, and timing parameters. We found that the pulse profiles of some of the pulsars show profile variations in time or frequency, and while some pulsars show signs of scattering, a large majority display no pulse broadening. The LOTAAS discoveries have on average steeper radio spectra and longer spin periods (1.4×), as well as lower spin-down rates (3.1×) compared to the known pulsar population. We discuss the cause of these differences and attribute them to a combination of selection effects of the LOTAAS survey as well as previous pulsar surveys, though we cannot rule out that older pulsars tend to have steeper radio spectra
Identifying transient and variable sources in radio images
With the arrival of a number of wide-field snapshot image-plane radio transient surveys, there will be a huge influx of images in the coming years making it impossible to manually analyse the datasets. Automated pipelines to process the information stored in the images are being developed, such as the LOFAR Transients Pipeline, outputting light curves and various transient parameters. These pipelines have a number of tuneable parameters that require training to meet the survey requirements. This paper utilises both observed and simulated datasets to demonstrate different machine learning strategies that can be used to train these parameters. We use a simple anomaly detection algorithm and a penalised logistic regression algorithm. The datasets used are from LOFAR observations and we process the data using the LOFAR Transients Pipeline; however the strategies developed are applicable to any light curve datasets at different frequencies and can be adapted to different automated pipelines. These machine learning strategies are publicly available as PYTHON tools that can be downloaded and adapted to different datasets (https://github.com/AntoniaR/TraP_ML_tools)
Radio Continuum Surveys with Square Kilometre Array Pathfinders
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return
- …
