379 research outputs found
Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin
Using trapped ions in an entangled state we propose detecting a magnetic
dipole of a single atom at distance of a few m. This requires a
measurement of the magnetic field gradient at a level of about 10
Tesla/m. We discuss applications e.g. in determining a wide variation of
ionic magnetic moments, for investigating the magnetic substructure of ions
with a level structure not accessible for optical cooling and detection,and for
studying exotic or rare ions, and molecular ions. The scheme may also be used
for measureing spin imbalances of neutral atoms or atomic ensembles trapped by
optical dipole forces. As the proposed method relies on techniques well
established in ion trap quantum information processing it is within reach of
current technology.Comment: 4 pages, 2 fi
MeV neutrinos in double beta decay
The effect of Majorana neutrinos in the MeV mass range on the double beta
decay of various isotopes is studied on pure phenomenological arguments. By
using only experimental half life data, limits on the mixing parameter
of the order 10 can be derived. Also the possible
achievements of upcoming experiments and some consequences are outlined.Comment: 7 pages, 6 uudecoded EPS-figure
Global Hopf bifurcation in the ZIP regulatory system
Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been
modeled by a system of ordinary differential equations based on the uptake of
zinc, expression of a transporter protein and the interaction between an
activator and inhibitor. For certain parameter choices the steady state of this
model becomes unstable upon variation in the external zinc concentration.
Numerical results show periodic orbits emerging between two critical values of
the external zinc concentration. Here we show the existence of a global Hopf
bifurcation with a continuous family of stable periodic orbits between two Hopf
bifurcation points. The stability of the orbits in a neighborhood of the
bifurcation points is analyzed by deriving the normal form, while the stability
of the orbits in the global continuation is shown by calculation of the Floquet
multipliers. From a biological point of view, stable periodic orbits lead to
potentially toxic zinc peaks in plant cells. Buffering is believed to be an
efficient way to deal with strong transient variations in zinc supply. We
extend the model by a buffer reaction and analyze the stability of the steady
state in dependence of the properties of this reaction. We find that a large
enough equilibrium constant of the buffering reaction stabilizes the steady
state and prevents the development of oscillations. Hence, our results suggest
that buffering has a key role in the dynamics of zinc homeostasis in plant
cells.Comment: 22 pages, 5 figures, uses svjour3.cl
New Leptoquark Mechanism of Neutrinoless Double Beta Decay
A new mechanism for neutrinoless double beta (\znbb) decay based on
leptoquark exchange is discussed. Due to the specific helicity structure of the
effective four-fermion interaction this contribution is strongly enhanced
compared to the well-known mass mechanism of \znbb decay. As a result the
corresponding leptoquark parameters are severely constrained from
non-observation of \znbb-decay. These constraints are more stringent than
those derived from other experiments.Comment: LaTeX, 6 pages, 1 figur
Towards a large-scale quantum simulator on diamond surface at room temperature
Strongly-correlated quantum many-body systems exhibits a variety of exotic
phases with long-range quantum correlations, such as spin liquids and
supersolids. Despite the rapid increase in computational power of modern
computers, the numerical simulation of these complex systems becomes
intractable even for a few dozens of particles. Feynman's idea of quantum
simulators offers an innovative way to bypass this computational barrier.
However, the proposed realizations of such devices either require very low
temperatures (ultracold gases in optical lattices, trapped ions,
superconducting devices) and considerable technological effort, or are
extremely hard to scale in practice (NMR, linear optics). In this work, we
propose a new architecture for a scalable quantum simulator that can operate at
room temperature. It consists of strongly-interacting nuclear spins attached to
the diamond surface by its direct chemical treatment, or by means of a
functionalized graphene sheet. The initialization, control and read-out of this
quantum simulator can be accomplished with nitrogen-vacancy centers implanted
in diamond. The system can be engineered to simulate a wide variety of
interesting strongly-correlated models with long-range dipole-dipole
interactions. Due to the superior coherence time of nuclear spins and
nitrogen-vacancy centers in diamond, our proposal offers new opportunities
towards large-scale quantum simulation at room temperatures
Microscopic theories of neutrino-^{12}C reactions
In view of the recent experiments on neutrino oscillations performed by the
LSND and KARMEN collaborations as well as of future experiments, we present new
theoretical results of the flux averaged and
cross sections. The approaches used are
charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the
Shell Model. With a large-scale shell model calculation the exclusive cross
sections are in nice agreement with the experimental values for both reactions.
The inclusive cross section for coming from the decay-in-flight of
is to be compared to the experimental value
of , while the one due to
coming from the decay-at-rest of is which
agrees within experimental error bars with the measured values. The shell model
prediction for the decay-in-flight neutrino cross section is reduced compared
to the RPA one. This is mainly due to the different kind of correlations taken
into account in the calculation of the spin modes and partially due to the
shell-model configuration basis which is not large enough, as we show using
arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay
We consider contributions of R-parity conserving softly broken supersymmetry
(SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating
sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY
model with a Majorana neutrino mass. The new R-parity conserving SUSY
contributions to \znbb are realized at the level of box diagrams. We derive
the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and
the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to
the Majorana neutrino mass is also derived.
Given the data on the \znbb-decay half-life of Ge and the neutrino
mass we obtain constraints on the (B-L)-violating sneutrino mass. These
constraints leave room for accelerator searches for certain manifestations of
the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most
probably too tight for first generation (B-L)-violating sneutrino masses to be
searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population
Mineral nutrient malnutrition, and particularly
deficiency in zinc and iron, afflicts over 3 billion people
worldwide. Wild emmer wheat, Triticum turgidum ssp.
dicoccoides, genepool harbors a rich allelic repertoire for
mineral nutrients in the grain. The genetic and physiological
basis of grain protein, micronutrients (zinc, iron,
copper and manganese) and macronutrients (calcium,
magnesium, potassium, phosphorus and sulfur) concentration
was studied in tetraploid wheat population of 152
recombinant inbred lines (RILs), derived from a cross
between durum wheat (cv. Langdon) and wild emmer
(accession G18-16). Wide genetic variation was found
among the RILs for all grain minerals, with considerable
transgressive effect. A total of 82 QTLs were mapped for
10 minerals with LOD score range of 3.2–16.7. Most QTLs
were in favor of the wild allele (50 QTLs). Fourteen pairs
of QTLs for the same trait were mapped to seemingly
homoeologous positions, reflecting synteny between the A
and B genomes. Significant positive correlation was found
between grain protein concentration (GPC), Zn, Fe and Cu,
which was supported by significant overlap between the
respective QTLs, suggesting common physiological and/or
genetic factors controlling the concentrations of these
mineral nutrients. Few genomic regions (chromosomes 2A,
5A, 6B and 7A) were found to harbor clusters of QTLs for
GPC and other nutrients. These identified QTLs may
facilitate the use of wild alleles for improving grain
nutritional quality of elite wheat cultivars, especially in
terms of protein, Zn and Fe
Radioactive decays at limits of nuclear stability
The last decades brought an impressive progress in synthesizing and studying
properties of nuclides located very far from the beta stability line. Among the
most fundamental properties of such exotic nuclides, usually established first,
is the half-life, possible radioactive decay modes, and their relative
probabilities. When approaching limits of nuclear stability, new decay modes
set in. First, beta decays become accompanied by emission of nucleons from
highly excited states of daughter nuclei. Second, when the nucleon separation
energy becomes negative, nucleons start to be emitted from the ground state.
Here, we present a review of the decay modes occurring close to the limits of
stability. The experimental methods used to produce, identify and detect new
species and their radiation are discussed. The current theoretical
understanding of these decay processes is overviewed. The theoretical
description of the most recently discovered and most complex radioactive
process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure
- …
