952 research outputs found
Temperature dependence of the upper critical field of an anisotropic singlet superconductivity in a square lattice tight-binding model in parallel magnetic fields
Upper critical field parallel to the conducting layer is studied in
anisotropic type-II superconductors on square lattices. We assume enough
separation of the adjacent layers, for which the orbital pair-breaking effect
is suppressed for exactly aligned parallel magnetic field. In particular, we
examine the temperature dependence of the critical field H_c(T) of the
superconductivity including the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF)
state, in which the Cooper pairs have non-zero center-of-mass momentum q. In
the system with the cylindrically symmetric Fermi-surface, it is known that
H_c(T) of the d-wave FFLO state exhibits a kink at a low temperature due to a
change of the direction of q in contrast to observations in organic
superconductors. It is shown that the kink disappears when the Fermi-surface is
anisotropic to some extent, since the direction of q is locked in an optimum
direction independent of the temperature.Comment: 5 pages, 5 figures, revtex.sty, submitted to J.Phys.Soc.Jp
Structure of the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional superconductors
Nonuniform superconducting state due to strong spin magnetism is studied in
two-dimensional type-II superconductors near the second order phase transition
line between the normal and the superconducting states. The optimum spatial
structure of the orderparameter is examined in systems with cylindrical
symmetric Fermi surfaces. It is found that states with two-dimensional
structures have lower free energies than the traditional one-dimensional
solutions, at low temperatures and high magnetic fields. For s-wave pairing,
triangular, square, hexagonal states are favored depending on the temperature,
while square states are favored at low temperatures for d-wave pairing. In
these states, orderparameters have two-dimensional structures such as square
and triangular lattices.Comment: 11 pages (LaTeX, revtex.sty), 3 figures; added reference
Theory of de Haas-van Alphen Effect in Type-II Superconductors
Theory of quasiparticle spectra and the de Haas-van Alphen (dHvA) oscillation
in type-II superconductors are developed based on the Bogoliubov-de Gennes
equations for vortex-lattice states. As the pair potential grows through the
superconducting transition, each degenerate Landau level in the normal state
splits into quasiparticle bands in the magnetic Brillouin zone. This brings
Landau-level broadening, which in turn leads to the extra dHvA oscillation
damping in the vortex state. We perform extensive numerical calculations for
three-dimensional systems with various gap structures. It is thereby shown that
(i) this Landau-level broadening is directly connected with the average gap at
H=0 along each Fermi-surface orbit perpendicular to the field H; (ii) the extra
dHvA oscillation attenuation is caused by the broadening around each extremal
orbit. These results imply that the dHvA experiment can be a unique probe to
detect band- and/or angle-dependent gap amplitudes. We derive an analytic
expression for the extra damping based on the second-order perturbation with
respect to the pair potential for the Luttinger-Ward thermodynamic potential.
This formula reproduces all our numerical results excellently, and is used to
estimate band-specific gap amplitudes from available data on NbSe_2, Nb_3Sn,
and YNi_2B_2C. The obtained value for YNi_2B_2C is fairly different from the
one through a specific-heat measurement, indicating presence of gap anisotropy
in this material. C programs to solve the two-dimensional Bogoliubov-de Gennes
equations are available at http://phys.sci.hokudai.ac.jp/~kita/index-e.html .Comment: 16 pages, 11 figure
Evidence of Andreev bound states as a hallmark of the FFLO phase in -(BEDT-TTF)Cu(NCS)
Superconductivity is a quantum phenomena arising, in its simplest form, from
pairing of fermions with opposite spin into a state with zero net momentum.
Whether superconductivity can occur in fermionic systems with unequal number of
two species distinguished by spin, atomic hyperfine states, flavor, presents an
important open question in condensed matter, cold atoms, and quantum
chromodynamics, physics. In the former case the imbalance between spin-up and
spin-down electrons forming the Cooper pairs is indyced by the magnetic field.
Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed
that such imbalanced system can lead to exotic superconductivity in which pairs
acquire finite momentum. The finite pair momentum leads to spatially
inhomogeneous state consisting of of a periodic alternation of "normal" and
"superconducting" regions. Here, we report nuclear magnetic resonance (NMR)
measurements providing microscopic evidence for the existence of this new
superconducting state through the observation of spin-polarized quasiparticles
forming so-called Andreev bound states.Comment: 6 pages, 5 fig
Fulde-Ferrell-Larkin-Ovchinnikov State in Heavy Fermion Superconductors
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is a novel superconducting
state in a strong magnetic field characterized by the formation of Cooper pairs
with nonzero total momentum (k \uparrow, -k+q \downarrow), instead of the
ordinary BCS pairs (k \uparrow, -k \downarrow). A fascinating aspect of the
FFLO state is that it exhibits inhomogeneous superconducting phases with a
spatially oscillating order parameter and spin polarization. The FFLO state has
been of interest in various research fields, not only in superconductors in
solid state physics, but also in neutral Fermion superfluid of ultracold atomic
gases and in color superconductivity in high energy physics. In spite of
extensive studies of various superconductors, there has been no undisputed
experimental verification of the FFLO state, mainly because of the very
stringent conditions required of the superconducting materials. Among several
classes of materials, certain heavy fermion and organic superconductors are
believed to provide conditions that are favorable to the formation of the FFLO
state. This review presents recent experimental and theoretical developments of
the FFLO state mainly in heavy fermion superconductors. In particular we
address the recently discovered quasi-two-dimensional superconductor CeCoIn_5,
which is a strong candidate for the formation of the FFLO state.Comment: 17 pages, 12 figures with jpsf2.cls, to be published in J. Phys. Soc.
Jpn. (Special Topics - Frontiers of Novel Superconductivity in Heavy Fermion
Compounds
Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals
Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a
broad range of applications, as their spectrum and thus their excitation gap
can be tailored by variation of their size. Additionally, nanocrystals of the
type ABC can be realized by alloying of two pure compound semiconductor
materials AC and BC, which allows for a continuous tuning of their absorption
and emission spectrum with the concentration x. We use the single-particle
energies and wave functions calculated from a multiband sp^3 empirical
tight-binding model in combination with the configuration interaction scheme to
calculate the optical properties of CdZnSe nanocrystals with a spherical shape.
In contrast to common mean-field approaches like the virtual crystal
approximation (VCA), we treat the disorder on a microscopic level by taking
into account a finite number of realizations for each size and concentration.
We then compare the results for the optical properties with recent experimental
data and calculate the optical bowing coefficient for further sizes
Observation of the decay
The decay is observed in collision
data corresponding to an integrated luminosity of 3 fb recorded by the
LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first
observation of this decay channel, with a statistical significance of 15
standard deviations. The mass of the meson is measured to be
MeV/c. The branching fraction ratio
is measured to be .
In both cases, the first uncertainty is statistical and the second is
systematic. No evidence for non-resonant or decays is found.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm
Observation of resonances consistent with pentaquark states in decays
Observations of exotic structures in the channel, that we refer to
as pentaquark-charmonium states, in decays are
presented. The data sample corresponds to an integrated luminosity of 3/fb
acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude
analysis is performed on the three-body final-state that reproduces the
two-body mass and angular distributions. To obtain a satisfactory fit of the
structures seen in the mass spectrum, it is necessary to include two
Breit-Wigner amplitudes that each describe a resonant state. The significance
of each of these resonances is more than 9 standard deviations. One has a mass
of MeV and a width of MeV, while the second
is narrower, with a mass of MeV and a width of MeV. The preferred assignments are of opposite parity, with one
state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after
referee's comments, now 19 figure
Amplitude analysis of decays
The first full amplitude analysis of with
, decays is performed with a data sample
of 3 fb of collision data collected at and TeV
with the LHCb detector. The data cannot be described by a model that contains
only excited kaon states decaying into , and four
structures are observed, each with significance over standard deviations.
The quantum numbers of these structures are determined with significance of at
least standard deviations. The lightest has mass consistent with, but width
much larger than, previous measurements of the claimed state. The
model includes significant contributions from a number of expected kaon
excitations, including the first observation of the
transition.Comment: 62 pages 26 figure
Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+
We perform amplitude analyses of the decays , , and , and measure CP-violating
parameters and partial branching fractions. The results are based on a data
sample of approximately decays, collected with the
BABAR detector at the PEP-II asymmetric-energy factory at the SLAC National
Accelerator Laboratory. For , we find a direct CP asymmetry
in of , which differs
from zero by . For , we measure the
CP-violating phase .
For , we measure an overall direct CP asymmetry of
. We also perform an angular-moment analysis of
the three channels, and determine that the state can be described
well by the sum of the resonances , , and
.Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree
with published versio
- …
