15,944 research outputs found

    Eigenspectrum Noise Subtraction Methods in Lattice QCD

    Full text link
    We propose a new noise subtraction method, which we call "eigenspectrum subtraction", which uses low eigenmode information to suppress statistical noise at low quark mass. This is useful for lattice calculations involving disconnected loops or all-to-all propagators. It has significant advantages over perturbative subtraction methods. We compare unsubtracted, eigenspectrum and perturbative error bar results for the scalar operator on a small Wilson QCD matrix.Comment: 8 page

    Revisiting the optical PTPT-symmetric dimer

    Full text link
    Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT\mathcal{PT}-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT\mathcal{PT}-symmetric dimer, a two-waveguide coupler were the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar NN-waveguide couplers that are the optical realization of Lorentz group in 2+1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of Ehrenfest theorem.Comment: 25 pages, 12 figure

    The Site-Diluted Ising Model in Four Dimension

    Get PDF
    In the literature, there are five distinct, fragmented sets of analytic predictions for the scaling behaviour at the phase transition in the random-site Ising model in four dimensions. Here, the scaling relations for logarithmic corrections are used to complete the scaling pictures for each set. A numerical approach is then used to confirm the leading scaling picture coming from these predictions and to discriminate between them at the level of logarithmic corrections.Comment: 15 pages, 5 ps figures. Accepted for publication in Phys. Rev.

    Electronic Cigarette Use and Associated Risk Factors in U.S.-Dwelling Pacific Islander Young Adults.

    Get PDF
    Background: E-cigarette use is rapidly increasing among US young adults, heightening their risk for vaping-related illnesses. Yet, little is known about e-cigarette use among young adult Native Hawaiians and Pacific Islanders (NHPI): an indigenous-colonized US racial group rarely described in research literature. This exploratory study provides the first known data on e-cigarette use and potential risk factors in NHPI young adults. Method: Self-report data were collected from 143 NHPI young adults (age 18-30 years) living in two large NHPI communities: Samoans in urban Los Angeles County and Marshallese in rural Arkansas. We assessed rates of e-cigarette, cigarette, alcohol, and marijuana use, and positive and negative outcome expectancies from e-cigarettes, that is expected outcomes from e-cigarette use. To identify potential risk factors for NHPI e-cigarette use, regressions explored associations between participants' current e-cigarette use with current cigarette, alcohol, and marijuana use, and e-cigarette outcome expectancies. Results: Among NHPI young adults, lifetime e-cigarette use rate was 53% and current use rate was 39%. Current rate of dual e-cigarette/cigarette, e-cigarette/alcohol, and e-cigarette/marijuana use was 38%, 35%, and 25%, respectively. In our regression models, current marijuana use and positive e-cigarette outcome expectancies were significantly associated with current e-cigarette use. Conclusions: E-cigarette use is common among NHPI young adults, exceeding rates for other at-risk racial groups. Marijuana use and positive expectations about e-cigarette use may represent potential e-cigarette use risk factors. Collectively, findings underscore the need for additional research to further explore the scope of, and risk and protective factors for, e-cigarette use in this understudied high-risk population

    Beyond Research Ethics: Dialogues in Neuro-ICT Research

    Get PDF
    open access articleThe increasing use of information and communication technologies (ICTs) to help facilitate neuroscience adds a new level of complexity to the question of how ethical issues of such research can be identified and addressed. Current research ethics practice, based on ethics reviews by institutional review boards (IRB) and underpinned by ethical principlism, has been widely criticized. In this article, we develop an alternative way of approaching ethics in neuro-ICT research, based on discourse ethics, which implements Responsible Research and Innovation (RRI) through dialogues. We draw on our work in Ethics Support, using the Human Brain Project (HBP) as empirical evidence of the viability of this approach

    Detection of new eruptions in the Magellanic Clouds LBVs R 40 and R 110

    Full text link
    We performed a spectroscopic and photometric analysis to study new eruptions in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a strong new eruption in the LBV R40 that reached V9.2V \sim 9.2 in 2016, which is around 1.31.3 mag brighter than the minimum registered in 1985. During this new eruption, the star changed from an A-type to a late F-type spectrum. Based on photometric and spectroscopic empirical calibrations and synthetic spectral modeling, we determine that R\,40 reached Teff=58006300T_{\mathrm{eff}} = 5800-6300~K during this new eruption. This object is thereby probably one of the coolest identified LBVs. We could also identify an enrichment of nitrogen and r- and s-process elements. We detected a weak eruption in the LBV R 110 with a maximum of V9.9V \sim 9.9 mag in 2011, that is, around 1.01.0 mag brighter than in the quiescent phase. On the other hand, this new eruption is about 0.20.2 mag fainter than the first eruption detected in 1990, but the temperature did not decrease below 8500 K. Spitzer spectra show indications of cool dust in the circumstellar environment of both stars, but no hot or warm dust was present, except by the probable presence of PAHs in R\,110. We also discuss a possible post-red supergiant nature for both stars

    What sets the magnetic field strength and cycle period in solar-type stars?

    Get PDF
    Two fundamental properties of stellar magnetic fields have been determined by observations for solar-like stars with different Rossby numbers (Ro), namely, the magnetic field strength and the magnetic cycle period. The field strength exhibits two regimes: 1) for fast rotation it is independent of Ro, 2) for slow rotation it decays with Ro following a power law. For the magnetic cycle period two regimes of activity, the active and inactive branches, also have been identified. For both of them, the longer the rotation period, the longer the activity cycle. Using global dynamo simulations of solar like stars with Rossby numbers between ~0.4 and ~2, this paper explores the relevance of rotational shear layers in determining these observational properties. Our results, consistent with non-linear alpha^2-Omega dynamos, show that the total magnetic field strength is independent of the rotation period. Yet at surface levels, the origin of the magnetic field is determined by Ro. While for Ro<1 it is generated in the convection zone, for Ro>1 strong toroidal fields are generated at the tachocline and rapidly emerge towards the surface. In agreement with the observations, the magnetic cycle period increases with the rotational period. However, a bifurcation is observed for Ro~1, separating a regime where oscillatory dynamos operate mainly in the convection zone, from the regime where the tachocline has a predominant role. In the latter the cycles are believed to result from the periodic energy exchange between the dynamo and the magneto-shear instabilities developing in the tachocline and the radiative interior.Comment: 43 pages, 14 figures, accepted for publication in The Astrophysical Journa

    Self-Averaging in the Three Dimensional Site Diluted Heisenberg Model at the critical point

    Full text link
    We study the self-averaging properties of the three dimensional site diluted Heisenberg model. The Harris criterion \cite{critharris} states that disorder is irrelevant since the specific heat critical exponent of the pure model is negative. According with some analytical approaches \cite{harris}, this implies that the susceptibility should be self-averaging at the critical temperature (Rχ=0R_\chi=0). We have checked this theoretical prediction for a large range of dilution (including strong dilution) at critically and we have found that the introduction of scaling corrections is crucial in order to obtain self-averageness in this model. Finally we have computed critical exponents and cumulants which compare very well with those of the pure model supporting the Universality predicted by the Harris criterion.Comment: 11 pages, 11 figures, 14 tables. New analysis (scaling corrections in the g2=0 scenario) and new numerical simulations. Title and conclusions chang
    corecore