4,074 research outputs found
A new search for anomalous neutrino oscillations at the CERN-PS
The LSND experiment has observed a 3.8 sigma excess of anti-nu_e events from
an anti-nu_mu beam coming from pions at rest. If confirmed, the LSND anomaly
would imply new physics beyond the standard model, presumably in the form of
some additional sterile neutrinos. The MiniBooNE experiment at FNAL-Booster has
further searched for the LSND anomaly. Above 475 MeV, the nu_e result is
excluding the LSND anomaly to about 1.6 sigma but it introduces an unexplained,
new 3.0 sigma anomaly at lower energies, down to 200 MeV. The nu_e data have so
far an insufficient statistics to be conclusive with LSND's anti-nu_e. The
present proposal at the CERN-PS is based on two strictly identical LAr-TPC
detectors in the near and far positions, respectively at 127 and 850 m from the
neutrino (or antineutrino) target and focussing horn, observing the
electron-neutrino signal. This project will benefit from the already developed
technology of ICARUS T600, well tested on surface in Pavia, without the need of
any major R&D activity and without the added problems of an underground
experiment (CNGS-2). The superior quality of the Liquid Argon imaging TPC and
its unique electron - pi-zero discrimination allow full rejection of the NC
background, without efficiency loss for electron neutrino detection. In two
years of exposure, the far detector mass of 600 tons and a reasonable
utilization of the CERN-PS with the refurbished previous TT7 beam line will
allow to collect about 10^6 charged current events, largely adequate to settle
definitely the LSND anomaly.Comment: 23 pages, 17 figures, added watermark, better referencin
Jet propulsion without inertia
A body immersed in a highly viscous fluid can locomote by drawing in and
expelling fluid through pores at its surface. We consider this mechanism of jet
propulsion without inertia in the case of spheroidal bodies, and derive both
the swimming velocity and the hydrodynamic efficiency. Elementary examples are
presented, and exact axisymmetric solutions for spherical, prolate spheroidal,
and oblate spheroidal body shapes are provided. In each case, entirely and
partially porous (i.e. jetting) surfaces are considered, and the optimal
jetting flow profiles at the surface for maximizing the hydrodynamic efficiency
are determined computationally. The maximal efficiency which may be achieved by
a sphere using such jet propulsion is 12.5%, a significant improvement upon
traditional flagella-based means of locomotion at zero Reynolds number. Unlike
other swimming mechanisms which rely on the presentation of a small cross
section in the direction of motion, the efficiency of a jetting body at low
Reynolds number increases as the body becomes more oblate, and limits to
approximately 162% in the case of a flat plate swimming along its axis of
symmetry. Our results are discussed in the light of slime extrusion mechanisms
occurring in many cyanobacteria
A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering
Large Liquid Argon TPC detectors in the range of multikton mass for neutrino
and astroparticle physics require the extraction and treatment of signals from
some 105 wires. In order to enlarge the throughtput of the DAQ system an
on-line lossless data compression has been realized reducing almost a factor 4
the data flow. Moreover a trigger system based on a new efficient on-line
identification algorithm of wire hits was studied, implemented on the actual
ICARUS digital read- out boards and fully tested on the ICARINO LAr-TPC
facility operated at LNL INFN Laboratory with cosmic-rays. Capability to
trigger isolated low energy events down to 1 MeV visible energy was also
demonstrated.Comment: 26 pages, 26 Figure; to be submitted to JINS
MiniBooNE
The physics motivations, design, and status of the Booster Neutrino
Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis
is given on the ongoing preparatory work that is needed for the MiniBooNE muon
neutrino to electron neutrino oscillation appearance search. This search aims
to confirm or refute in a definitive and independent way the evidence for
neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th
International Conference on Astroparticle and Underground Physics (TAUP
2005), Zaragoza, Spain, 10-14 Sep 200
Operation of a LAr-TPC equipped with a multilayer LEM charge readout
A novel detector for the ionization signal in a single phase LAr-TPC, based
on the adoption of a multilayer Large Electron Multiplier (LEM) replacing the
traditional anodic wire arrays, has been experimented in the ICARINO test
facility at the INFN Laboratories in Legnaro. Cosmic muon tracks were detected
allowing the measurement of energy deposition and a first determination of the
signal to noise ratio. The analysis of the recorded events demonstrated the 3D
reconstruction capability of ionizing events in this device in liquid Argon,
collecting a fraction of about 90% of the ionization signal with signal to
noise ratio similar to that measured with more traditional wire chambersComment: 9 pages, 7 Figure
Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives
Free electron lifetime achievements in Liquid Argon Imaging TPC
A key feature for the success of the liquid Argon imaging TPC (LAr-TPC)
technology is the industrial purification against electro-negative impurities,
especially Oxygen and Nitrogen remnants, which have to be continuously kept at
an exceptionally low level by filtering and recirculating liquid Argon.
Improved purification techniques have been applied to a 120 liters LAr-TPC test
facility in the INFN-LNL laboratory. Through-going muon tracks have been used
to determine the free electron lifetime in liquid Argon against
electro-negative impurities. The short path length here observed (30 cm) is
compensated by the high accuracy in the observation of the specific ionization
of cosmic ray muons at sea level as a function of the drift distance. A free
electron lifetime of (21.4+7.3-4.3) ms, namely > 15.8 ms at 90 % C.L. has been
observed over several weeks under stable conditions, corresponding to a
residual Oxygen equivalent of about 15 ppt (part per trillion). At 500 V/cm,
the free electron speed is 1.5 m/ms. In a LAr-TPC a free electron lifetime in
excess of 15 ms corresponds for instance to an attenuation of less than 15 %
after a drift path of 5 m, opening the way to the operation of the LAr-TPC with
exceptionally long drift distances.Comment: 15 pages, 10 figures; Accepted for publication in JINS
, and the neutrino mass hierarchy at a double baseline Li/B -Beam
We consider a -Beam facility where Li and B ions are
accelerated at , accumulated in a 10 Km storage ring and let
decay, so as to produce intense and beams. These beams
illuminate two iron detectors located at Km and
Km, respectively. The physics potential of this setup is analysed in full
detail as a function of the flux. We find that, for the highest flux ( ion decays per year per baseline), the sensitivity to
reaches ; the sign of
the atmospheric mass difference can be identified, regardless of the true
hierarchy, for ; and, CP-violation
can be discovered in 70% of the -parameter space for , having some sensitivity to CP-violation down to
for .Comment: 35 pages, 20 figures. Minor changes, matches the published versio
Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings
- …
