1,063 research outputs found

    The effect of placebo and neurophysiological involvements

    Get PDF
    Placebo and placebo effect are important issues related to the drug therapy for clinical and scientific meanings. The rates of placebo may get as many as 50% for analgesic drugs in headache. The high answer to placebo brings questions on pathophysiology of headache. Answers may offer a new strategy in the implementation of trials and new insight in neurophysiology of headache. Current knowledge on placebo and placebo effect will be analysed and dicussed looking for new direction in headache field

    Clinical survey of neurosensory side-effects of mandibular parasymphyseal bone harvesting

    Get PDF
    The aim of the present survey was to assess neurosensory disturbances and/or tooth-pulp sensitivity losses after mandibular parasymphyseal bone-harvesting procedures. Twenty-eight harvesting areas in 16 patients were surveyed. Mucosal and skin sensitivity of the chin/lower lip, divided into four regions, were determined via Pointed-Blunt and Two-Point-Discrimination Tests. Pulp sensitivity of the mandibular teeth from the left second bicuspid to the right second bicuspid was tested by cold vitality preoperatively and 12 months postoperatively. Teeth were grouped according to sensitivity alterations and distance from the harvesting defects, as measured on CT scans, and statistically significant differences sought. At 12 months, 29% of preoperatively vital cuspids overlying the harvesting defects revealed pulp-sensitivity losses; no patient reported anaesthesia or analgesia; hypoaesthesia was present in 4% (8 sites; 2 patients), hypoalgesia was present in 3% (5 sites; 2 patients) and Two-Point-Discrimination Tests yielded pathologic responses in 5% of tested areas (10 sites; 4 patients). Teeth with and without pulp sensitivity changes were statistically indistinguishable regarding distances between root apices or mental foramen and the harvesting defect. The loss of pulp sensitivity in any tooth cannot be predicted simply on the basis of the distance between its apex and the harvesting osteotomy line

    Fish assemblages across the Mediterranean Sea and the effects of protection from fishing = I Popolamenti ittici nel Mediterraneo e gli effetti della protezione dall’impatto della pesca

    Get PDF
    Several studies have assessed the effectiveness of individual marine protected areas (MPAs) in protecting fish assemblages, but regional assessments of multiple parks are scarce. Here fish surveys using visual census were done in marine parks and fished areas at 31 locations across the Mediterranean Sea. Fish species richness, diversity and biomass (especially of top predators) were higher in MPAs compared to fished areas, and community structure differed significantly between MPAs and fished areas. Results suggest that MPAs are generally effective means to protect and recover fish populations and assemblages

    Relationship between leukocytosis and ischemic complications following aneurysmal subarachnoid hemorrhage.

    Get PDF
    The prognostic significance of admission leukocytosis with respect to ischemic complications of subarachnoid hemorrhage was retrospectively investigated in a series of patients with recently ruptured intracranial aneurysms. The present study concerned 47 consecutive cases admitted within 72 hours following the last hemorrhage, in the years 1982-1984. There was no difference in the admission WBC counts between patients who subsequently deteriorated due to ischemic complications and those who did not. However, the cell count rose significantly at the time of the clinical manifestations of ischemia, possibly as a result of structural damage of brain tissue and/or increased sympathetic and adrenocortical activity. The possible contribution of leukocytes to the pathogenesis of ischemic damage following subarachnoid hemorrhage--perhaps through the release of leukotrienes--will require further investigation

    The intracluster magnetic field power spectrum in A2199

    Full text link
    We investigate the magnetic field power spectrum in the cool core galaxy cluster A2199 by analyzing the polarized emission of the central radio source 3C338. The polarized radiation from the radio emitting plasma is modified by the Faraday rotation as it passes through the magneto-ionic intracluster medium. We use Very Large Array observations between 1665 and 8415 MHz to produce detailed Faraday rotation measure and fractional polarization images of the radio galaxy. We simulate Gaussian random three-dimensional magnetic field models with different power-law power spectra and we assume that the field strength decreases radially with the thermal gas density as n_e^{\eta}. By comparing the synthetic and the observed images with a Bayesian approach, we constrain the strength and structure of the magnetic field associated with the intracluster medium. We find that the Faraday rotation toward 3C338 in A2199 is consistent with a magnetic field power law power spectrum characterized by an index n=(2.8 \pm 1.3) between a maximum and a minimum scale of fluctuation of \Lambda_{max}=(35 \pm 28) kpc and \Lambda_{min}=(0.7 \pm 0.1) kpc, respectively. By including in the modeling X-ray cavities coincident with the radio galaxy lobes, we find a magnetic field strength of =(11.7 \pm 9.0) \mu G at the cluster center. Further out, the field decreases with the radius following the gas density to the power of \eta=(0.9 \pm 0.5).Comment: 17 pages, 12 figures, A&A accepte

    Janus II: a new generation application-driven computer for spin-system simulations

    Get PDF
    This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures, which can be implemented with available electronics technologies, may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.Comment: 28 pages, 6 figure

    Thermodynamic glass transition in a spin glass without time-reversal symmetry

    Get PDF
    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure

    Critical Behavior of Three-Dimensional Disordered Potts Models with Many States

    Get PDF
    We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower pp values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat. Mec

    Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites &lt;i&gt;Trypanosoma brucei rhodesiense&lt;/i&gt; or &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt;, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in the severity of the neuroinflammatory response was detected when the inhibitor was administered in animals exhibiting the more severe, late central nervous system stage, of the infection. &lt;i&gt;In vitro&lt;/i&gt; assays showed that Ro-61-8048 had no direct effect on trypanosome proliferation suggesting that the anti-inflammatory action is due to a direct effect of the inhibitor on the host cells and not a secondary response to parasite destruction. These findings demonstrate that kynurenine pathway catabolites are involved in the generation of the more severe inflammatory reaction associated with the late central nervous system stages of the disease and suggest that Ro-61-8048 or a similar drug may prove to be beneficial in preventing or ameliorating the PTRE when administered as an adjunct to conventional trypanocidal chemotherap

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic
    corecore