4,419 research outputs found
Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era
The multi-band template analysis (MBTA) pipeline is a low-latency coincident
analysis pipeline for the detection of gravitational waves (GWs) from compact
binary coalescences. MBTA runs with a low computational cost, and can identify
candidate GW events online with a sub-minute latency. The low computational
running cost of MBTA also makes it useful for data quality studies. Events
detected by MBTA online can be used to alert astronomical partners for
electromagnetic follow-up. We outline the current status of MBTA and give
details of recent pipeline upgrades and validation tests that were performed in
preparation for the first advanced detector observing period. The MBTA pipeline
is ready for the outset of the advanced detector era and the exciting prospects
it will bring.Comment: 18 pages, 10 figure
A New Waveform Consistency Test for Gravitational Wave Inspiral Searches
Searches for binary inspiral signals in data collected by interferometric
gravitational wave detectors utilize matched filtering techniques. Although
matched filtering is optimal in the case of stationary Gaussian noise, data
from real detectors often contains "glitches" and episodes of excess noise
which cause filter outputs to ring strongly. We review the standard \chi^2
statistic which is used to test whether the filter output has appropriate
contributions from several different frequency bands. We then propose a new
type of waveform consistency test which is based on the time history of the
filter output. We apply one such test to the data from the first LIGO science
run and show that it cleanly distinguishes between true inspiral waveforms and
large-amplitude false signals which managed to pass the standard \chi^2 test.Comment: 10 pages, 6 figures, submitted to Classical and Quantum Gravity for
the proceedings of the Eighth Gravitational Wave Data Analysis Workshop
(GWDAW-8
Magnetic soft modes in the locally distorted triangular antiferromagnet alpha-CaCr2O4
In this paper we explore the phase diagram and excitations of a distorted
triangular lattice antiferromagnet. The unique two-dimensional distortion
considered here is very different from the 'isosceles'-type distortion that has
been extensively investigated. We show that it is able to stabilize a 120{\deg}
spin structure for a large range of exchange interaction values, while new
structures are found for extreme distortions. A physical realization of this
model is \alpha-CaCr2O4 which has 120{\deg} structure but lies very close to
the phase boundary. This is verified by inelastic neutron scattering which
reveals unusual roton-like minima at reciprocal space points different from
those corresponding to the magnetic order.Comment: 5 pages, 3 figures and lots of spin-wave
Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering
Inelastic neutron scattering has been applied to the study of the spin
dynamics of Cr-based antiferromagnetic octanuclear rings where a finite total
spin of the ground state is obtained by substituting one Cr(III) ion (s = 3/2)
with Zn (s = 0), Mn (s = 5/2) or Ni (s = 1) di-cations. Energy and intensity
measurements for several intra-multiplet and inter-multiplet magnetic
excitations allow us to determine the spin wavefunctions of the investigated
clusters. Effects due to the mixing of different spin multiplets have been
considered. Such effects proved to be important to correctly reproduce the
energy and intensity of magnetic excitations in the neutron spectra. On the
contrary to what is observed for the parent homonuclear Cr8 ring, the symmetry
of the first excited spin states is such that anticrossing conditions with the
ground state can be realized in the presence of an external magnetic field.
Heterometallic Cr7M wheels are therefore good candidates for macroscopic
observations of quantum effects.Comment: 9 pages, 11 figures, submitted to Phys. Rev. B, corrected typos and
added references, one sentence change
Quantum spin chain as a potential realization of the Nersesyan-Tsvelik model
It is well established that long-range magnetic order is suppressed in
magnetic systems whose interactions are low-dimensional. The prototypical
example is the S-1/2 Heisenberg antiferromagnetic chain (S-1/2 HAFC) whose
ground state is quantum critical. In real S-1/2 HAFC compounds interchain
coupling induces long-range magnetic order although with a suppressed ordered
moment and reduced N\'eel temperature compared to the Curie-Weiss temperature.
Recently, it was suggested that order can also be suppressed if the interchain
interactions are frustrated, as for the Nersesyan-Tsvelik model. Here, we study
the new S-1/2 HAFC, (NO)[Cu(NO3)3]. This material shows extreme suppression of
order which furthermore is incommensurate revealing the presence of frustration
consistent with the Nersesyan-Tsvelik model
- …
