924 research outputs found
Pair distribution function and structure factor of spherical particles
The availability of neutron spallation-source instruments that provide total
scattering powder diffraction has led to an increased application of real-space
structure analysis using the pair distribution function. Currently, the
analytical treatment of finite size effects within pair distribution refinement
procedures is limited. To that end, an envelope function is derived which
transforms the pair distribution function of an infinite solid into that of a
spherical particle with the same crystal structure. Distributions of particle
sizes are then considered, and the associated envelope function is used to
predict the particle size distribution of an experimental sample of gold
nanoparticles from its pair distribution function alone. Finally, complementing
the wealth of existing diffraction analysis, the peak broadening for the
structure factor of spherical particles, expressed as a convolution derived
from the envelope functions, is calculated exactly for all particle size
distributions considered, and peak maxima, offsets, and asymmetries are
discussed.Comment: 7 pages, 6 figure
Nanocrystallization and Amorphization Induced by Reactive Nitrogen Sputtering in Iron and Permalloy
Thin films of iron and permalloy Ni80Fe20 were prepared using an Ar+N2
mixture with magnetron sputtering technique at ambient temperature. The
nitrogen partial pressure, during sputtering process was varied in the range of
0 to 100%, keeping the total gas flow at constant. At lower nitrogen pressures
RN2<33% both Fe and NiFe, first form a nanocrystalline structure and an
increase in nitrogen partail pressure results in formation of an amorphous
structure. At intermediate nitrogen partial pressures, nitrides of Fe and NiFe
were obtained while at even higher nitrogen partial pressures, nitrides
themselves became nanocrystalline or amorphous. The surface, structural and
magnetic properties of the deposited films were studied using x-ray reflection
and diffraction, transmission electron microscopy, polarized neutron
reflectivity and using a DC extraction magnetometer. The growth behavior for
amorphous film was found different as compared with poly or nanocrystalline
films. The soft-magnetic properties of FeN were improved on nanocrystallization
while those of NiFeN were degraded. A mechanism inducing nanocrystallization
and amorphization in Fe and NiFe due to reactive nitrogen sputtering is
discussed in the present article.Comment: 13 Pages, 15 Figure
Structural and magnetic properties of CoPt mixed clusters
In this present work, we report a structural and magnetic study of mixed
Co58Pt42 clusters. MgO, Nb and Si matrix can be used to embed clusters,
avoiding any magnetic interactions between particles. Transmission Electron
Microscopy (TEM) observations show that Co58Pt42 supported isolated clusters
are about 2nm in diameter and crystallized in the A1 fcc chemically disordered
phase. Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing
Incidence Wide Angle X-ray Scattering (GIWAXS) reveal that buried clusters
conserve these properties, interaction with matrix atoms being limited to their
first atomic layers. Considering that 60% of particle atoms are located at
surface, this interactions leads to a drastic change in magnetic properties
which were investigated with conventional magnetometry and X-Ray Magnetic
Circular Dichro\"{i}sm (XMCD). Magnetization and blocking temperature are
weaker for clusters embedded in Nb than in MgO, and totally vanish in silicon
as silicides are formed. Magnetic volume of clusters embedded in MgO is close
to the crystallized volume determined by GIWAXS experiments. Cluster can be
seen as a pure ferromagnetic CoPt crystallized core surrounded by a
cluster-matrix mixed shell. The outer shell plays a predominant role in
magnetic properties, especially for clusters embedded in niobium which have a
blocking temperature 3 times smaller than clusters embedded in MgO
Small Angle Scattering by Fractal Aggregates: A Numerical Investigation of the Crossover Between the Fractal Regime and the Porod Regime
Fractal aggregates are built on a computer using off-lattice cluster-cluster
aggregation models. The aggregates are made of spherical particles of different
sizes distributed according to a Gaussian-like distribution characterised by a
mean and a standard deviation . The wave vector dependent
scattered intensity is computed in order to study the influence of the
particle polydispersity on the crossover between the fractal regime and the
Porod regime. It is shown that, given , the location of the
crossover decreases as increases. The dependence of on
can be understood from the evolution of the shape of the center-to-center
interparticle-distance distribution function.Comment: RevTex, 4 pages + 6 postscript figures, compressed using "uufiles",
published in Phys. Rev. B 50, 1305 (1994
A 4-unit-cell superstructure in optimally doped YBa2Cu3O6.92 superconductor
Using high-energy diffraction we show that a 4-unit-cell superstructure,
q0=(1/4,0,0), along the shorter Cu-Cu bonds coexists with superconductivity in
optimally doped YBCO. A complex set of anisotropic atomic displacements on
neighboring CuO chain planes, BaO planes, and CuO2 planes, respectively,
correlated over ~3-6 unit cells gives rise to diffuse superlattice peaks. Our
observations are consistent with the presence of Ortho-IV nanodomains
containing these displacements.Comment: Corrected typo in abstrac
Exact limiting relation between the structure factors in neutron and x-ray scattering
The ratio of the static matter structure factor measured in experiments on
coherent X-ray scattering to the static structure factor measured in
experiments on neutron scattering is considered. It is shown theoretically that
this ratio in the long-wavelength limit is equal to the nucleus charge at
arbitrary thermodynamic parameters of a pure substance (the system of nuclei
and electrons, where interaction between particles is pure Coulomb) in a
disordered equilibrium state. This result is the exact relation of the quantum
statistical mechanics. The experimental verification of this relation can be
done in the long wavelength X-ray and neutron experiments.Comment: 7 pages, no figure
Molecular dynamics simulations of lead clusters
Molecular dynamics simulations of nanometer-sized lead clusters have been
performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf
269/270}, 1109 (1992)). The binding energies of clusters forming crystalline
(fcc), decahedron and icosahedron structures are compared, showing that fcc
cuboctahedra are the most energetically favoured of these polyhedral model
structures. However, simulations of the freezing of liquid droplets produced a
characteristic form of ``shaved'' icosahedron, in which atoms are absent at the
edges and apexes of the polyhedron. This arrangement is energetically favoured
for 600-4000 atom clusters. Larger clusters favour crystalline structures.
Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect
fcc Wulff particle, containing a number of parallel stacking faults. The
effects of temperature on the preferred structure of crystalline clusters below
the melting point have been considered. The implications of these results for
the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other
minor changes for publicatio
Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium
We report x-ray reflectivity (XR) and small angle off-specular diffuse
scattering (DS) measurements from the surface of liquid Indium close to its
melting point of C. From the XR measurements we extract the surface
structure factor convolved with fluctuations in the height of the liquid
surface. We present a model to describe DS that takes into account the surface
structure factor, thermally excited capillary waves and the experimental
resolution. The experimentally determined DS follows this model with no
adjustable parameters, allowing the surface structure factor to be deconvolved
from the thermally excited height fluctuations. The resulting local electron
density profile displays exponentially decaying surface induced layering
similar to that previously reported for Ga and Hg. We compare the details of
the local electron density profiles of liquid In, which is a nearly free
electron metal, and liquid Ga, which is considerably more covalent and shows
directional bonding in the melt. The oscillatory density profiles have
comparable amplitudes in both metals, but surface layering decays over a length
scale of \AA for In and \AA for Ga. Upon controlled
exposure to oxygen, no oxide monolayer is formed on the liquid In surface,
unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.
Diffractive point sets with entropy
After a brief historical survey, the paper introduces the notion of entropic
model sets (cut and project sets), and, more generally, the notion of
diffractive point sets with entropy. Such sets may be thought of as
generalizations of lattice gases. We show that taking the site occupation of a
model set stochastically results, with probabilistic certainty, in well-defined
diffractive properties augmented by a constant diffuse background. We discuss
both the case of independent, but identically distributed (i.i.d.) random
variables and that of independent, but different (i.e., site dependent) random
variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th
birthday; final version, some minor addition
Law, Liberty and the Rule of Law (in a Constitutional Democracy)
In the hunt for a better--and more substantial--awareness of the “law,” The author intends to analyze the different notions related to the “rule of law” and to criticize the conceptions that equate it either to the sum of “law” and “rule” or to the formal assertion that “law rules,” regardless of its relationship to certain principles, including both “negative” and “positive” liberties. Instead, he pretends to scrutinize the principles of the “rule of law,” in general, and in a “constitutional democracy,” in particular, to conclude that the tendency to reduce the “democratic principle” to the “majority rule” (or “majority principle”), i.e. to whatever pleases the majority, as part of the “positive liberty,” is contrary both to the “negative liberty” and to the “rule of law” itself
- …
