183 research outputs found
Nutritive value for sheep of untreated hoop pine sawdust supplemented with urea or biuret
In a trial lasting 100 days, three groups of eight 18-months old wether. sheep were fed daily 1 000 g basal ration or 800 g basal ration plus 200 g sawdust, or 800 g basal ration, to measure the digestibility and nutritive value of hoop pine (Auracaria cunninghami1) sawdust. The dry matter digestibility of the sawdust was 1·7 % and it made no contribution to animal performance. The rations were supplemented with either urea or biuret, but there was no difference between supplements in animal performance or ration digestibility. However, biuret-supplemented sheep apparently retained more nitrogen than urea-supplemented sheep. A mixed softwood sawdust and two mixed hardwood sawdusts were also examined and had dry matter digestibilities of 3·1 %, 4·3%, and 4·3% respectively
Effect of dipping on the growth rate of grazing cattle
Eighteen sets of twin cattle were used in an experiment to measure the effect of stresses associated with control of the cattle tick (Boophilus microplus) on the growth rate of grazing cattle. On nine occasions in a simulated tick eradication programme, three groups each of
12 cattle were either (a) weighed only (control), or (b) driven a total of 4·8 km and weighed, or (c) driven a total of 4·8 km, dipped in an organo-phosphate acaricide, and weighed. The cattle were checked regularly on treatment days for tick burdens, but these were insignificant.
Productivity of the cattle was unaffected by treatments during the trial, which lasted 102 days
High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys : Effect of Alloy Composition
From Parking Meters to Vending Machines: A Study of Usability Issues in Self-Service Technologies
This paper describes a mixed-methods usability study of seven diverse Self-Service Technologies (SSTs). SSTs mediate many of our everyday interactions with individuals, businesses, and government organizations. Parking meters, transport ticket machines, electric vehicle recharge points, and fast-food ordering kiosks are all likely familiar examples of this category of technology, promising convenient access to products and services. Despite their ubiquity, many SSTs suffer from severe usability issues, the nature of which have not been explored to date by the HCI community. This study evaluates the interactions between users and a broad sample of SSTs, details the usability issues that occurred, explores their connections and consequences, and presents a set of design considerations that may lead to their remediation
Buses, cars, bicycles and walkers the influence of the type of human transport on the flight responses of waterbirds
One way to manage disturbance to waterbirds in natural areas where humans require access is to promote the occurrence of stimuli for which birds tolerate closer approaches, and so cause fewer responses. We conducted 730 experimental approaches to 39 species of waterbird, using five stimulus types (single walker, three walkers, bicycle, car and bus) selected to mimic different human management options available for a controlled access, Ramsar-listed wetland. Across species, where differences existed (56% of 25 cases), motor vehicles always evoked shorter flight-initiation distances (FID) than humans on foot. The influence of stimulus type on FID varied across four species for which enough data were available for complete cross-stimulus analysis. All four varied FID in relation to stimuli, differing in 4 to 7 of 10 possible comparisons. Where differences occurred, the effect size was generally modest, suggesting that managing stimulus type (e.g. by requiring people to use vehicles) may have species-specific, modest benefits, at least for the waterbirds we studied. However, different stimulus types have different capacities to reduce the frequency of disturbance (i.e. by carrying more people) and vary in their capacity to travel around important habita
Expression of taste receptors in Solitary Chemosensory Cells of rodent airways
<p>Abstract</p> <p>Background</p> <p>Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs.</p> <p>Methods</p> <p>We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP).</p> <p>Results</p> <p>Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways.</p> <p>Conclusions</p> <p>Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.</p
Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells
Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions
Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond
2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe
Neurogenic mechanisms in bladder and bowel ageing
The prevalence of both urinary and faecal incontinence, and also chronic constipation, increases with ageing and these conditions have a major impact on the quality of life of the elderly. Management of bladder and bowel dysfunction in the elderly is currently far from ideal and also carries a significant financial burden. Understanding how these changes occur is thus a major priority in biogerontology. The functions of the bladder and terminal bowel are regulated by complex neuronal networks. In particular neurons of the spinal cord and peripheral ganglia play a key role in regulating micturition and defaecation reflexes as well as promoting continence. In this review we discuss the evidence for ageing-induced neuronal dysfunction that might predispose to neurogenic forms of incontinence in the elderly
Survival feeding of cattle with molasses. 2. Feeding steers with molasses/urea plus either sorghum grain (Sorghum vulgare) or cottonseed meal (Gossypium hirsutum)
- …
