476 research outputs found

    The spatial distribution of O-B5 stars in the solar neighborhood as measured by Hipparcos

    Full text link
    We have developed a method to calculate the fundamental parameters of the vertical structure of the Galaxy in the solar neighborhood from trigonometric parallaxes alone. The method takes into account Lutz-Kelker-type biases in a self-consistent way and has been applied to a sample of O-B5 stars obtained from the Hipparcos catalog. We find that the Sun is located 24.2 +/- 1.7 (random) +/- 0.4 (systematic) pc above the galactic plane and that the disk O-B5 stellar population is distributed with a scale height of 34.2 +/- 0.8 (random) +/- 2.5 (systematic) pc and an integrated surface density of (1.62 +/- 0.04 (random) +/- 0.14 (systematic)) 10^{-3} stars pc^{-2}. A halo component is also detected in the distribution and constitutes at least ~5% of the total O-B5 population. The O-B5 stellar population within ~100 pc of the Sun has an anomalous spatial distribution, with a less-than-average number density. This local disturbance is probably associated with the expansion of Gould's belt.Comment: 14 pages, 3 figures, to appear in the May 2001 issue of the Astronomical Journa

    Optical Technologies for UV Remote Sensing Instruments

    Get PDF
    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented

    An X-ray Imaging Study of the Stellar Population in RCW49

    Full text link
    We present the results of a high-resolution X-ray imaging study of the stellar population in the Galactic massive star-forming region RCW49 and its central OB association Westerlund 2. We obtained a 40 ks X-ray image of a 17'x17' field using the Chandra X-ray Observatory and deep NIR images using the Infrared Survey Facility in a concentric 8'3x8'3 region. We detected 468 X-ray sources and identified optical, NIR, and Spitzer Space Telescope MIR counterparts for 379 of them. The unprecedented spatial resolution and sensitivity of the X-ray image, enhanced by optical and infrared imaging data, yielded the following results: (1) The central OB association Westerlund 2 is resolved for the first time in the X-ray band. X-ray emission is detected from all spectroscopically-identified early-type stars in this region. (2) Most (86%) X-ray sources with optical or infrared identifications are cluster members in comparison with a control field in the Galactic Plane. (3) A loose constraint (2--5 kpc) for the distance to RCW49 is derived from the mean X-ray luminosity of T Tauri stars. (4) The cluster X-ray population consists of low-mass pre--main-sequence and early-type stars as obtained from X-ray and NIR photometry. About 30 new OB star candidates are identified. (5) We estimate a cluster radius of 6'--7' based on the X-ray surface number density profiles. (6) A large fraction (90%) of cluster members are identified individually using complimentary X-ray and MIR excess emission. (7) The brightest five X-ray sources, two Wolf-Rayet stars and three O stars, have hard thermal spectra.Comment: 19 pages, 17 figures, 4 tables. ApJ in pres

    Modeling of the Vela complex including the Vela supernova remnant, the binary system gamma2 Velorum, and the Gum nebula

    Full text link
    We study the geometry and dynamics of the Vela complex including the Vela supernova remnant (SNR), the binary system gamma2 Velorum and the Gum nebula. We show that the Vela SNR belongs to a subclass of non-Sedov adiabatic remnants in a cloudy interstellar medium (ISM), the dynamics of which is determined by the heating and evaporation of ISM clouds. We explain observable characteristics of the Vela SNR with a SN explosion with energy 1.4 x 10^50 ergs near the step-like boundary of the ISM with low intercloud densities (~ 10^{-3} cm^{-3}) and with a volume-averaged density of clouds evaporated by shock in the north-east (NE) part about four times higher than the one in the south-west (SW) part. The observed asymmetry between the NE and SW parts of the Vela SNR could be explained by the presence of a stellar wind bubble (SWB) blown by the nearest-to-the Earth Wolf-Rayet (WR) star in the gamma2 Velorum system. We show that the size and kinematics of gamma2 Velorum SWB agree with predictions of numerical calculations for the evolution of the SWB of M_ini = 35M* star. The low initial mass of the WR star in gamma2 Velorum implies that the luminosity of the nuclear line of 26Al, produced by gamma2 Velorum, is below the sensitivity of existing gamma-ray telescopes.Comment: 8 pages, 2 figures, accepted for publication in A&

    New infrared star clusters in the Northern and Equatorial Milky Way with 2MASS

    Get PDF
    We carried out a survey of infrared star clusters and stellar groups on the 2MASS J, H and K_s all-sky release Atlas in the Northern and Equatorial Milky Way (350 < l < 360, 0 < l < 230). The search in this zone complements that in the Southern Milky Way (Dutra et al. 2003a). The method concentrates efforts on the directions of known optical and radio nebulae. The present study provides 167 new infrared clusters, stellar groups and candidates. Combining the two studies for the whole Milky Way, 346 infrared clusters, stellar groups and candidates were discovered, whereas 315 objects were previously known. They constitute an important new sample for future detailed studies.Comment: Accepted to Astronomy and Astrophysic

    A high-resolution radio survey of the Vela supernova remnant

    Full text link
    This paper presents a high-resolution radio continuum (843 MHz) survey of the Vela supernova remnant. The contrast between the structures in the central pulsar-powered nebula of the remnant and the synchrotron radiation shell allows the remnant to be identified morphologically as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey, made with the Molonglo Observatory Synthesis Telescope, covers an area of 50 square degrees at a resolution of 43'' x 60'', while imaging structures on scales up to 30'.Comment: 18 pages, 7 jpg figures (version with ps figures at http://astro.berkeley.edu/~dbock/papers/); AJ, in pres

    The Structure of the Star-forming Cluster RCW 38

    Full text link
    We present a study of the structure of the high mass star-forming region RCW~38 and the spatial distribution of its young stellar population. Spitzer IRAC photometry 3-8um are combined with 2MASS near-IR data to identify young stellar objects by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 Class II stars, and 74 Class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including seven class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] vs. [3.6]-[5.8] cmd. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas to dust ratio is examined using the X-ray derived hydrogen column density, N_H and the K-band extinction, and found to be consistent with the diffuse ISM, in contrast with Serpens & NGC1333. We posit that the high photoionising flux of massive stars in RCW 38 affects the agglomeration of the dust grains.Comment: 98 pages, 15 figure

    New Herbig-Haro Objects and Giant Outflows in Orion

    Get PDF
    We present the results of a photographic and CCD imaging survey for Herbig-Haro (HH) objects in the L1630 and L1641 giant molecular clouds in Orion. The new HH flows were initially identified from a deep H-alpha film from the recently commissioned AAO/UKST H-alpha Survey of the southern sky. Our scanned H-alpha and broad band R images highlight both the improved resolution of the H-alpha survey and the excellent contrast of the H-alpha flux with respect to the broad band R. Comparative IVN survey images allow us to distinguish between emission and reflection nebulosity. Our CCD H-alpha, [SII], continuum and I band images confirm the presence of a parsec-scale HH flow associated with the Ori I-2 cometary globule and several parsec-scale strings of HH emission centred on the L1641-N infrared cluster. Several smaller outflows display one-sided jets. Our results indicate that for declinations south of -6 degrees in L1641, parsec-scale flows appear to be the major force in the large-scale movement of optical dust and molecular gas.Comment: 14 pages, Latex using MN style, 21 figures in JPEG format. Higher resolution figures available from S.L. Mader. Accepted by MNRAS. Email contact for higher resolution images: [email protected]

    Sequential Star Formation in RCW 34: A Spectroscopic Census of the Stellar Content of High-mass Star-forming Regions

    Full text link
    We present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected on the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an HII region is located, ionized by 3 OB stars. Intermediate mass stars (2 - 3 Msun) are detected of G- and K- spectral type. These stars are still in the pre-main sequence (PMS) phase. North of the HII region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 +- 0.2 kpc and an age estimate of 2 - 1 Myrs is derived from the properties of the PMS stars inside the HII region. The most likely scenario for the formation of the three regions is that star formation propagates from South to North. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the HII region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion as a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible: (a) The bubble with the cluster of low- and intermediate mass stars triggered the formation of the O star at the edge of the molecular cloud which in turn induces the current star-formation in the molecular cloud. (b) An external triggering is responsible for the star-formation propagating from South to North. [abridged]Comment: 19 pages, 11 figures, accepted by Ap
    corecore