3,186 research outputs found
Correlation functions of the One-Dimensional Random Field Ising Model at Zero Temperature
We consider the one-dimensional random field Ising model, where the spin-spin
coupling, , is ferromagnetic and the external field is chosen to be
with probability and with probability . At zero temperature, we
calculate an exact expression for the correlation length of the quenched
average of the correlation function in the case that is not an integer. The
result is a discontinuous function of . When , we also
place a bound on the correlation length of the quenched average of the
correlation function .Comment: 12 pages (Plain TeX with one PostScript figure appended at end), MIT
CTP #220
Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences
We consider the product of infinitely many copies of a spin-
system. We construct projection operators on the corresponding nonseparable
Hilbert space which measure whether the outcome of an infinite sequence of
measurements has any specified property. In many cases, product
states are eigenstates of the projections, and therefore the result of
measuring the property is determined. Thus we obtain a nonprobabilistic quantum
analogue to the law of large numbers, the randomness property, and all other
familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe
Derivation of the Quantum Probability Rule without the Frequency Operator
We present an alternative frequencists' proof of the quantum probability rule
which does not make use of the frequency operator, with expectation that this
can circumvent the recent criticism against the previous proofs which use it.
We also argue that avoiding the frequency operator is not only for technical
merits for doing so but is closely related to what quantum mechanics is all
about from the viewpoint of many-world interpretation.Comment: 12 page
Grover's algorithm on a Feynman computer
We present an implementation of Grover's algorithm in the framework of
Feynman's cursor model of a quantum computer. The cursor degrees of freedom act
as a quantum clocking mechanism, and allow Grover's algorithm to be performed
using a single, time-independent Hamiltonian. We examine issues of locality and
resource usage in implementing such a Hamiltonian. In the familiar language of
Heisenberg spin-spin coupling, the clocking mechanism appears as an excitation
of a basically linear chain of spins, with occasional controlled jumps that
allow for motion on a planar graph: in this sense our model implements the idea
of "timing" a quantum algorithm using a continuous-time random walk. In this
context we examine some consequences of the entanglement between the states of
the input/output register and the states of the quantum clock
Enabling Technologies for the Future of Chemical Synthesis.
Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis.We are grateful to the Woolf Fisher Trust (D.E.F), Syngenta Crop Protection AG (C.B.) and EPSRC (S.V.L., grant codes EP/K009494/1, EP/M004120/1 and EP/K039520/1) for financial assistance.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acscentsci.6b0001
Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7
We report structural and magnetic properties studies of large high quality
single-crystals of the frustrated magnet, NdZrO. Powder x-ray
diffraction analysis confirms that NdZrO adopts the pyrochlore
structure. Room-temperature x-ray diffraction and time-of-flight neutron
scattering experiments show that the crystals are stoichiometric in composition
with no measurable site disorder. The temperature dependence of the magnetic
susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits
to the magnetic susceptibility data using a Curie-Weiss law reveal a
ferromagnetic coupling between the Nd moments. Magnetization versus field
measurements show a local Ising anisotropy along the axes of the
Nd ions in the ground state. Specific heat versus temperature
measurements in zero applied magnetic field indicate the presence of a thermal
anomaly below K, but no evidence of magnetic ordering is observed down
to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc
susceptibility and isothermal magnetization are analyzed using crystal field
theory and the crystal field parameters and exchange coupling constants
determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical
Review
Quantum Adiabatic Algorithms, Small Gaps, and Different Paths
We construct a set of instances of 3SAT which are not solved efficiently using the simplestquantum adiabatic algorithm. These instances are obtained by picking randomclauses all consistent with two disparate planted solutions and then penalizing one ofthem with a single additional clause. We argue that by randomly modifying the beginningHamiltonian, one obtains (with substantial probability) an adiabatic path thatremoves this difficulty. This suggests that the quantum adiabatic algorithm should ingeneral be run on each instance with many different random paths leading to the problemHamiltonian. We do not know whether this trick will help for a random instance of3SAT (as opposed to an instance from the particular set we consider), especially if theinstance has an exponential number of disparate assignments that violate few clauses.We use a continuous imaginary time Quantum Monte Carlo algorithm in a novel way tonumerically investigate the ground state as well as the first excited state of our system.Our arguments are supplemented by Quantum Monte Carlo data from simulations withup to 150 spins.United States. Dept. of Energy (Cooperative Research Agreement DE-FG02-94ER40818)W. M. Keck Foundation Center for Extreme Quantum Information TheoryU.S. Army Research Laboratory (Grant W911NF-09-1-0438)National Science Foundation (U.S.) (Grant CCF-0829421
Probabilistic Perception Revision in AgentSpeak(L)
Agent programming is mostly a symbolic discipline and, as such, draws little benefits from probabilistic areas as machine learning and graphical models. However, the greatest objective of agent research is the achievement of autonomy in dynamical and complex environments — a goal that implies embracing uncertainty and therefore the entailed representations, algorithms and techniques. This paper proposes an innovative and conflict free two layer approach to agent programming that uses already established methods and tools from both symbolic and probabilistic artificial intelligence. Moreover, this method is illustrated by means of a widely used agent programming example, GOLDMINERS
A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity
Sequence analysis has shown significant homology between the catalytic regions of the mammalian ras GTPase-activating protein (GAP), yeast Ira1p and Ira2p (inhibitory regulators of the RAS-cyclic AMP pathway), and neurofibromin, the protein encoded by the NF1 gene. Yeast expression experiments have confirmed that a 381-amino-acid segment of neurofibromin, dubbed the GAP-related domain (GRD), can function as a GAP. Using the RNA polymerase chain reaction with primers flanking the NF1-GRD, we have identified evidence for alternative splicing in this region of the NF1 gene. In addition to the already published sequence (type I), an alternative RNA carrying a 63-nucleotide insertion (type II) is present in all tissues examined, although the relative amounts of types I and II vary. The insertion is conserved across species but is not present in GAP, IRA1, or IRA2. GenBank searches have failed to identify significant similarity between the inserted sequence and known DNA or protein sequences, although the basic amino acid composition of the insertion shares features with nuclear targeting sequences. Expression studies in yeasts show that despite the partial disruption of the neurofibromin-IRA-GAP homology by this insertion, both forms of the NF1-GRD can complement loss of IRA function. In vivo assays designed to compare the GAP activity of the two alternatively spliced forms of the NF1-GRD show that both can increase the conversion of GTP-bound ras to its GDP-bound form, although the insertion of the 21 amino acids weakens this effect. The strong conservation of this alternative, splicing suggests that both type I and II isoforms mediate important biological functions of neurofibromin
- …
