405 research outputs found
A matrix product state based algorithm for determining dispersion relations of quantum spin chains with periodic boundary conditions
We study a matrix product state (MPS) algorithm to approximate excited states
of translationally invariant quantum spin systems with periodic boundary
conditions. By means of a momentum eigenstate ansatz generalizing the one of
\"Ostlund and Rommer [1], we separate the Hilbert space of the system into
subspaces with different momentum. This gives rise to a direct sum of effective
Hamiltonians, each one corresponding to a different momentum, and we determine
their spectrum by solving a generalized eigenvalue equation. Surprisingly, many
branches of the dispersion relation are approximated to a very good precision.
We benchmark the accuracy of the algorithm by comparison with the exact
solutions of the quantum Ising and the antiferromagnetic Heisenberg spin-1/2
model.Comment: 13 pages, 11 figures, 5 table
Entropy growth of shift-invariant states on a quantum spin chain
We study the entropy of pure shift-invariant states on a quantum spin chain.
Unlike the classical case, the local restrictions to intervals of length
are typically mixed and have therefore a non-zero entropy which is,
moreover, monotonically increasing in . We are interested in the asymptotics
of the total entropy. We investigate in detail a class of states derived from
quasi-free states on a CAR algebra. These are characterised by a measurable
subset of the unit interval. As the entropy density is known to vanishes,
is sublinear in . For states corresponding to unions of finitely many
intervals, is shown to grow slower than . Numerical
calculations suggest a behaviour. For the case with infinitely many
intervals, we present a class of states for which the entropy increases
as where can take any value in .Comment: 18 pages, 2 figure
Rigorous free fermion entanglement renormalization from wavelet theory
We construct entanglement renormalization schemes which provably approximate
the ground states of non-interacting fermion nearest-neighbor hopping
Hamiltonians on the one-dimensional discrete line and the two-dimensional
square lattice. These schemes give hierarchical quantum circuits which build up
the states from unentangled degrees of freedom. The circuits are based on pairs
of discrete wavelet transforms which are approximately related by a
"half-shift": translation by half a unit cell. The presence of the Fermi
surface in the two-dimensional model requires a special kind of circuit
architecture to properly capture the entanglement in the ground state. We show
how the error in the approximation can be controlled without ever performing a
variational optimization.Comment: 15 pages, 10 figures, one theore
Thermal States as Convex Combinations of Matrix Product States
We study thermal states of strongly interacting quantum spin chains and prove
that those can be represented in terms of convex combinations of matrix product
states. Apart from revealing new features of the entanglement structure of
Gibbs states our results provide a theoretical justification for the use of
White's algorithm of minimally entangled typical thermal states. Furthermore,
we shed new light on time dependent matrix product state algorithms which yield
hydrodynamical descriptions of the underlying dynamics.Comment: v3: 10 pages, 2 figures, final published versio
Extending additivity from symmetric to asymmetric channels
We prove a lemma which allows one to extend results about the additivity of
the minimal output entropy from highly symmetric channels to a much larger
class. A similar result holds for the maximal output -norm. Examples are
given showing its use in a variety of situations. In particular, we prove the
additivity and the multiplicativity for the shifted depolarising channel.Comment: 8 pages. This is the latest version of the first half of the original
paper. The other half will appear in another pape
Geometric representations for minimalist grammars
We reformulate minimalist grammars as partial functions on term algebras for
strings and trees. Using filler/role bindings and tensor product
representations, we construct homomorphisms for these data structures into
geometric vector spaces. We prove that the structure-building functions as well
as simple processors for minimalist languages can be realized by piecewise
linear operators in representation space. We also propose harmony, i.e. the
distance of an intermediate processing step from the final well-formed state in
representation space, as a measure of processing complexity. Finally, we
illustrate our findings by means of two particular arithmetic and fractal
representations.Comment: 43 pages, 4 figure
Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species
Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species' contrasting population histories
Tensor completion in hierarchical tensor representations
Compressed sensing extends from the recovery of sparse vectors from
undersampled measurements via efficient algorithms to the recovery of matrices
of low rank from incomplete information. Here we consider a further extension
to the reconstruction of tensors of low multi-linear rank in recently
introduced hierarchical tensor formats from a small number of measurements.
Hierarchical tensors are a flexible generalization of the well-known Tucker
representation, which have the advantage that the number of degrees of freedom
of a low rank tensor does not scale exponentially with the order of the tensor.
While corresponding tensor decompositions can be computed efficiently via
successive applications of (matrix) singular value decompositions, some
important properties of the singular value decomposition do not extend from the
matrix to the tensor case. This results in major computational and theoretical
difficulties in designing and analyzing algorithms for low rank tensor
recovery. For instance, a canonical analogue of the tensor nuclear norm is
NP-hard to compute in general, which is in stark contrast to the matrix case.
In this book chapter we consider versions of iterative hard thresholding
schemes adapted to hierarchical tensor formats. A variant builds on methods
from Riemannian optimization and uses a retraction mapping from the tangent
space of the manifold of low rank tensors back to this manifold. We provide
first partial convergence results based on a tensor version of the restricted
isometry property (TRIP) of the measurement map. Moreover, an estimate of the
number of measurements is provided that ensures the TRIP of a given tensor rank
with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its
Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral
- …
