4,458 research outputs found

    Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    Get PDF
    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon

    VARIATION IN BODY TEMPERATURE AND THERMOREGULATORY BEHAVIOR BETWEEN TWO POPULATIONS OF THE LESSER EARLESS LIZARD, HOLBROOKIA MACULATA

    Get PDF
    Body temperatures and thermoregulatory behavior of field-active Holbrookia maculata were evaluated for two sites at approximately equal elevation (approximately1200 m) in southern New Mexico: 1) a population at White Sands National Monument, and 2) a population at the Jornada Long-term Ecological Research site. H. maculata at WS had significantly lower body temperatures (mean = 36.3°C) than those measured at the Jornada Long-term Ecological Research site (mean = 39.5°C). The slope of a regression of body temperature on air temperature was significantly different between populations (White Sands National Monument; 0.65, the Jornada Long-term Ecological Research site; 0.36). The microhabitats in which individuals were first observed correlated with body temperatures at White Sands National Monument, but not at the Jornada Long-term Ecological Research site. These data suggest that environmental temperature differences between sites influenced body temperatures and thermoregulation in behavior H. maculata

    Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences

    Get PDF
    Using models of infinite length strike-slip faults in an elastic layer above linear viscoelastic regions, we investigate interseismic deformation. In the models we investigate, interseismic strain accumulation on mature faults is the result of the cumulative effects of all previous ruptures and is independent of the fault loading conditions. The time for a fault to spin-up to a mature state depends on the rheologies and the fault loading conditions. After the model has spun-up, the temporal variation of shear stresses is determined by the fault slip rate and model rheologies. The change in stress during spin-up depends on the slip rate, rheologies, and fault loading conditions but is independent of the magnitude of the initial stress. Over enough cycles such that the cumulative deformation is block-like, the average mature interseismic velocities are equal to the interseismic velocities of an elastic model with the same geometry and distribution of shear moduli. In a model that has spun-up with the fault rupturing periodically, the cumulative deformation is block-like at the end of each seismic cycle, and the interseismic deformation is cycle-invariant (i.e., the same in all cycles). When the fault ruptures nonperiodically, the fault spins up to a mature state that is the same as if the fault had ruptured periodically with the mean slip rate. When the fault slip rate within each cycle varies, the interseismic deformation evolves toward the cycle-invariant deformation determined by the most recent fault slip rate. Around a fault whose slip rate has been faster (slower) than average, interseismic velocities are larger (smaller) than the cycle-invariant velocities and increase (decrease) from cycle to cycle

    Fundamental studies in geodynamics

    Get PDF
    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix

    The effects of rheological layering on post-seismic deformation

    Get PDF
    We examine the effects of rheological layering on post-seismic deformation using models of an elastic layer over a viscoelastic layer and a viscoelastic half-space. We extend a general linear viscoelastic theory we have previously proposed to models with two layers over a half-space, although we only consider univiscous Maxwell and biviscous Burgers rheologies. In layered viscoelastic models, there are multiple mechanical timescales of post-seismic deformation; however, not all of these timescales arise as distinct phases of post-seismic relaxation observed at the surface. The surface displacements in layered models with only univiscous, Maxwell viscoelastic rheologies always exhibit one exponential-like phase of relaxation. Layered models containing biviscous rheologies may produce multiple phases of relaxation, where the distinctness of the phases depends on the geometry and the contrast in strengths between the layers. Post-seismic displacements in models with biviscous rheologies can often be described by logarithmic functions

    A dynamic model of Venus's gravity field

    Get PDF
    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage
    corecore