8,720 research outputs found
The Orbifold-String Theories of Permutation-Type: III. Lorentzian and Euclidean Space-Times in a Large Example
To illustrate the general results of the previous paper, we discuss here a
large concrete example of the orbifold-string theories of permutation-type. For
each of the many subexamples, we focus on evaluation of the \emph{target
space-time dimension} , the \emph{target space-time
signature} and the \emph{target space-time symmetry} of each cycle in each
twisted sector . We find in particular a gratifying \emph{space-time
symmetry enhancement} which naturally matches the space-time symmetry of each
cycle to its space-time dimension. Although the orbifolds of
-permutation-type are naturally Lorentzian, we find that the target
space-times associated to larger permutation groups can be Lorentzian,
Euclidean and even null (\hat{D}_{j}(\sigma)=0), with varying space-time
dimensions, signature and symmetry in a single orbifold.Comment: 36 page
Two Large Examples in Orbifold Theory: Abelian Orbifolds and the Charge Conjugation Orbifold on su(n)
Recently the operator algebra and twisted vertex operator equations were
given for each sector of all WZW orbifolds, and a set of twisted KZ equations
for the WZW permutation orbifolds were worked out as a large example. In this
companion paper we report two further large examples of this development. In
the first example we solve the twisted vertex operator equations in an abelian
limit to obtain the twisted vertex operators and correlators of a large class
of abelian orbifolds. In the second example, the twisted vertex operator
equations are applied to obtain a set of twisted KZ equations for the
(outer-automorphic) charge conjugation orbifold on su(n \geq 3).Comment: 58 pages, v2: three minor typo
The orbifold-string theories of permutation-type: II. Cycle dynamics and target space-time dimensions
We continue our discussion of the general bosonic prototype of the new
orbifold-string theories of permutation type. Supplementing the extended
physical-state conditions of the previous paper, we construct here the extended
Virasoro generators with cycle central charge
, where is the length of cycle
in twisted sector . We also find an equivalent, reduced formulation
of each physical-state problem at reduced cycle central charge
. These tools are used to begin the study of the target
space-time dimension of cycle in sector , which
is naturally defined as the number of zero modes (momenta) of each cycle. The
general model-dependent formulae derived here will be used extensively in
succeeding papers, but are evaluated in this paper only for the simplest case
of the "pure" permutation orbifolds.Comment: 32 page
Flat Connections for Characters in Irrational Conformal Field Theory
Following the paradigm on the sphere, we begin the study of irrational
conformal field theory (ICFT) on the torus. In particular, we find that the
affine-Virasoro characters of ICFT satisfy heat-like differential equations
with flat connections. As a first example, we solve the system for the general
coset construction, obtaining an integral representation for the general
coset characters. In a second application, we solve for the high-level
characters of the general ICFT on simple , noting a simplification for the
subspace of theories which possess a non-trivial symmetry group. Finally, we
give a geometric formulation of the system in which the flat connections are
generalized Laplacians on the centrally-extended loop group.Comment: harvmac (answer b to question) 40 pages. LBL-35718, UCB-PTH-94/1
Ward Identities for Affine-Virasoro Correlators
Generalizing the Knizhnik-Zamolodchikov equations, we derive a hierarchy of
non-linear Ward identities for affine-Virasoro correlators. The hierarchy
follows from null states of the Knizhnik-Zamolodchikov type and the assumption
of factorization, whose consistency we verify at an abstract level. Solution of
the equations requires concrete factorization ans\"atze, which may vary over
affine-Virasoro space. As a first example, we solve the non-linear equations
for the coset constructions, using a matrix factorization. The resulting coset
correlators satisfy first-order linear partial differential equations whose
solutions are the coset blocks defined by Douglas.Comment: 53 pages, Latex, LBL-32619, UCB-PTH-92/24, BONN-HE-92/2
Unification of the General Non-Linear Sigma Model and the Virasoro Master Equation
The Virasoro master equation describes a large set of conformal field
theories known as the affine-Virasoro constructions, in the operator algebra
(affine Lie algebra) of the WZW model, while the Einstein equations of the
general non-linear sigma model describe another large set of conformal field
theories. This talk summarizes recent work which unifies these two sets of
conformal field theories, together with a presumable large class of new
conformal field theories. The basic idea is to consider spin-two operators of
the form in the background of a general
sigma model. The requirement that these operators satisfy the Virasoro algebra
leads to a set of equations called the unified Einstein-Virasoro master
equation, in which the spin-two spacetime field couples to the usual
spacetime fields of the sigma model. The one-loop form of this unified system
is presented, and some of its algebraic and geometric properties are discussed.Comment: 18 pages, Latex. Talk presented by MBH at the NATO Workshop `New
Developments in Quantum Field Theory', June 14-20, 1997, Zakopane, Polan
Infinite Dimensional Free Algebra and the Forms of the Master Field
We find an infinite dimensional free algebra which lives at large N in any
SU(N)-invariant action or Hamiltonian theory of bosonic matrices. The natural
basis of this algebra is a free-algebraic generalization of Chebyshev
polynomials and the dual basis is closely related to the planar connected
parts. This leads to a number of free-algebraic forms of the master field
including an algebraic derivation of the Gopakumar-Gross form. For action
theories, these forms of the master field immediately give a number of new
free-algebraic packagings of the planar Schwinger-Dyson equations.Comment: 39 pages. Expanded historical remark
- …
