1,142 research outputs found
Evaluation of a self-equilibrium cutting strategy for the contour method of residual stress measurement
An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. The cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. The reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (KI) stress intensity factor (SIF) along the cut tip, and correlating trends in KI to CIP development
Laue Lens Development for Hard X-rays (>60 keV)
Results of reflectivity measurements of mosaic crystal samples of Cu (111)
are reported. These tests were performed in the context of a feasibility study
of a hard X-ray focusing telescope for space astronomy with energy passband
from 60 to 600 keV. The technique envisaged is that of using mosaic crystals in
transmission configuration that diffract X-rays for Bragg diffraction (Laue
lens). The Laue lens assumed has a spherical shape with focal length . It is
made of flat mosaic crystal tiles suitably positioned in the lens. The samples
were grown and worked for this project at the Institute Laue-Langevin (ILL) in
Grenoble (France), while the reflectivity tests were performed at the X-ray
facility of the Physics Department of the University of Ferrara.Comment: 6 pages, 12 figures, accepted for publication in IEEE Transactions on
Nuclear Scienc
Heterogeneous-k-core versus Bootstrap Percolation on Complex Networks
We introduce the heterogeneous--core, which generalizes the -core, and
contrast it with bootstrap percolation. Vertices have a threshold which
may be different at each vertex. If a vertex has less than neighbors it
is pruned from the network. The heterogeneous--core is the sub-graph
remaining after no further vertices can be pruned. If the thresholds are
with probability or with probability , the process
forms one branch of an activation-pruning process which demonstrates
hysteresis. The other branch is formed by ordinary bootstrap percolation. We
show that there are two types of transitions in this heterogeneous--core
process: the giant heterogeneous--core may appear with a continuous
transition and there may be a second, discontinuous, hybrid transition. We
compare critical phenomena, critical clusters and avalanches at the
heterogeneous--core and bootstrap percolation transitions. We also show that
network structure has a crucial effect on these processes, with the giant
heterogeneous--core appearing immediately at a finite value for any
when the degree distribution tends to a power law with
.Comment: 10 pages, 4 figure
STS-99 Shuttle Radar Topography Mission Stability and Control
The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design
"Groundwater ages" of the Lake Chad multi-layer aquifers system inferred from 14C and 36Cl data
Understanding edge-connectivity in the Internet through core-decomposition
Internet is a complex network composed by several networks: the Autonomous
Systems, each one designed to transport information efficiently. Routing
protocols aim to find paths between nodes whenever it is possible (i.e., the
network is not partitioned), or to find paths verifying specific constraints
(e.g., a certain QoS is required). As connectivity is a measure related to both
of them (partitions and selected paths) this work provides a formal lower bound
to it based on core-decomposition, under certain conditions, and low complexity
algorithms to find it. We apply them to analyze maps obtained from the
prominent Internet mapping projects, using the LaNet-vi open-source software
for its visualization
Using 36Cl data to quantify the paleorecharge in arid region : example of the NorthWestern Saharan Aquifer System
Sr-Nd-Hf isotopes along the Pacific Antarctic Ridge from 41 to 53°S
International audienceMajor, trace element and Sr-Nd-Hf isotope data in basalts collected along the Pacific-Antarctic Ridge (PAR) axis between 53 and 41°S, far from any hotspot influence, reveal tight coherent geochemical variations within the depleted MORB mantle. All samples are located below the Pacific reference line defining two sub-oceanic mantle domains on each side of the Easter microplate. The data extend the PAR 66-53°S field towards more radiogenic Sr (0.70264), less radiogenic Nd (ɛ = 7.7) and Hf (ɛ = 11.4) values. The along ridge geochemical variability is closely related to the morphological segmentation of the ridge. Anomalous geochemical features are attributed to the atypical morphology of two segments due to the presence of off-axis magmatism. The first order ridge discontinuity defined by the Menard transform fault separates two slightly different mantle domains, each with its own history
A geochronological 40Ar/39Ar and 87Rb/87Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil
- …
