23 research outputs found
Worldwide impacts of climate change on energy for heating and cooling
The energy sector is not only a major contributor to greenhouse gases, it is also vulnerable to climate change and will have to adapt to future climate conditions. The objective of this study is to analyze the impacts of changes in future temperatures on the heating and cooling services of buildings and the resulting energy and macro-economic effects at global and regional levels. For this purpose, the techno-economic TIAM-WORLD (TIMES Integrated Assessment Model) and the general equilibrium GEMINI-E3 (General Equilibrium Model of International-National Interactions between Economy, Energy and Environment) models are coupled with a climate model, PLASIM-ENTS (Planet-Simulator - Efficient Numerical Terrestrial Scheme). The key results are as follows. At the global level, the climate feedback induced by adaptation of the energy system to heating and cooling is found to be insignificant, partly because heating and cooling-induced changes compensate and partly because they represent a limited share of total final energy consumption. However, significant changes are observed at regional levels, more particularly in terms of addi- tional power capacity required to satisfy additional cooling services, resulting in increases in electricity prices. In terms of macro-economic impacts, welfare gains and losses are associated more with changes in energy exports and imports than with changes in energy consumption for heating and cooling. The rebound effect appears to be non-negligible. To conclude, the coupling of models of different nature was successful and showed that the energy and economic impacts of climate change on heating and cooling remain small at the global level, but changes in energy needs will be visible at more local scale
Assessment of hydropower for climate change mitigation and sustainable development using multicriteria analysis
Temperature sensitivity and effects of climate change on fish communities in rivers and below lakes
A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa
There are over 580 million people in sub-Saharan Africa without access to electricity. The region has significant untapped hydropower potential that could contribute to improving domestic access to electricity and countries’ economic development, as well as helping to meet the Sustainable Development Goals. Changes in climate affect hydropower generation through alterations to river flow regimes. Hence it is the energy source most likely to be affected by climate change because the amount of electricity generated is directly related to water quantity and its timing. However, climate change impacts are rarely explicitly considered when planning new hydropower projects in the region. This may be because current fluvial discharge series in sub-Saharan Africa display high levels of natural variability and it is only after the 2050s that climate-driven changes in river flows emerge from these. Planning horizons of hydropower projects are usually around 30 years, so the natural variability of the existing hydrological regime is within the variability of climate change projections and hence it is unlikely to be considered. Another reason is that over the past 15 years China has become a significant financer of infrastructure in the region. China only meets the environmental regulations of the country in which the hydropower scheme is being constructed. Most sub-Saharan African countries do not have regulations that include climate change in the planning of such projects. This paper concludes by suggesting a framework via which climate change can be incorporated in future hydropower schemes at a river basin scale
Power-generation system vulnerability and adaptation to changes in climate and water resources
Hydropower and thermoelectric power together contribute 98% of the world's electricity generation at present These power-generating technologies both strongly depend on water availability, and water temperature for cooling also plays a critical role for thermoelectric power generation. Climate change and resulting changes in water resources will therefore affect power generation while energy demands continue to increase with economic development and a growing world population. Here we present a global assessment of the vulnerability of the world's current hydropower and thermoelectric power-generation system to changing climate and water resources, and test adaptation options for sustainable water-energy security during the twenty-first century. Using a coupled hydrological-electricity modelling framework with data on 24,515 hydropower and 1,427 thermoelectric power plants, we show reductions in usable capacity for 61.74% of the hydropower plants and 81.86% of the thermoelectric power plants worldwide for 2040-2069. However, adaptation options such as increased plant efficiencies, replacement of cooling system types and fuel switches are effective alternatives to reduce the assessed vulnerability to changing climate and freshwater resources. Transitions in the electricity sector with a stronger focus on adaptation, in addition to mitigation, are thus highly recommended to sustain water-energy security in the coming decades
Power-generation system vulnerability and adaptation to changes in climate and water resources
A Bayesian Network Approach to Identity Climate Teleconnections Within Homogeneous Precipitation Regions in Ecuador
Vulnerability of Uganda’s Electricity Sector to Climate Change: An Integrated Systems Analysis
Hydropower contributed to about 86% of Uganda’s total electricity generation in 2016 (UBOS, 2016). With more than 2000 MW of investments in the pipeline, within the next decade (Platts 2016), this technology is expected to play a critical role in Uganda’s transition to a higher consumption level in the multi-tier framework for measuring energy access (MEMD 2015). Competition for water sources is a common challenge among its users. In this case, hydropower infrastructure is not an exception, and water allocation is frequently prioritized to supply domestic and agriculture sectors.With Uganda’s population expected to double by 2050 compared to 2015 levels (UNDESA 2017), the competition for water among the different sectors is only expected to increase. In addition to this, climatic variables, like precipitation and temperature, introduce a high variability in the availability of surface water (Maslin and Austin 2012). Hence, before locking down on major infrastructure decisions as is the case of large-scale hydropower plants (>100 MW), it is prudent to take into consideration the cross-sectorial dependencies, trade-offs, and potential impacts of climate variability. This study develops a methodology based on the established Climate, Land, Energy and Water strategies (CLEWs) framework (Howells et al. 2013) to assess the vulnerability of the electricity sector to climate change by also considering minimum environmental flows in major Ugandan rivers. This assessment utilizes the cost of electricity generation as an indicative metric to compare conditions of different hydropower output, in light of changing climates and hypothetical environmental flow constraints. It concludes that irrespective of the climate, if key environmental services have to be maintained, there will be a reduction in hydropower generation in the country, and proper adaptation measures need to be taken to avoid disruptions in power supply.</p
