181 research outputs found
Envisioning Transition From Open Landscapes to Forested Landscapes in the Routt National Forest, Colorado, United States
Globally, in remaining wildlands, tree densities and forested cover have increased in grasslands and open forests since European settlement. In the southern Rocky Mountains of Colorado, United States, we determined tree composition and tree cover from historical (years 1875 to 1896) surveys and compared them to current (2002 to 2011) tree composition and current (year 2016) forested land cover for 500,000 ha of the Routt National Forest. Additionally, we examined whether changes in precipitation occurred. Regarding composition, pine (primarily lodgepole pine; Pinus contorta) decreased from 65% to 32% of all trees, with increased subalpine fir (Abies lasiocarpa) from 0.5% to 23% of all trees, and quaking aspen (Populus tremuloides) from 13% to 30% of all trees. According to 80% of 5175 survey points not in forests, the historical landscape was very open, comprised of grasslands, mountain meadows, and other open ecosystems. In contrast, 75% of the current landscape is covered by forests. Change points in the Palmer Modified Drought Index were within historical limits, indicating that forestation was not related to a change in water availability. Based on historical surveys and accounts, we envisioned a historical landscape that was open but embedded with dense lodgepole pine clusters and spruce stands at high elevations, which has now become a predominantly forested landscape of dense forests, similar to global forestation patterns
Loss of aboveground forest biomass and landscape biomass variability in Missouri, US
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters \u3e/= 13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters \u3e/= 13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration
Loss of aboveground forest biomass and landscape biomass variability in Missouri, US
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters \u3e/= 13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters \u3e/= 13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration
Loss of aboveground forest biomass and landscape biomass variability in Missouri, US
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters \u3e/= 13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters \u3e/= 13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration
Historical forests of the Black Hills, South Dakota, USA, determined using General Land Office surveys
Forests in the western United States generally have increased in tree density since Euro-American settlement, particularly through increases in fire-sensitive species, such as spruces, firs, and junipers. Like most areas, the Black Hills region in western South Dakota and eastern Wyoming was logged for forest products and underwent agricultural conversion before historical forests were documented. To supplement historical reconstructions and accounts, we compared tree composition and densities (diameters ≥12.7 cm at 1.37 m above ground height) from historical General Land Office (GLO) records (years 1878 to 1915) and current Forest Inventory and Analysis (FIA) tree surveys (years 2011 to 2016) in the Black Hills Highlands of South Dakota. For composition, ponderosa pine (Pinus ponderosa P. Lawson & C. Lawson) decreased from 95% to 86% of all trees, with a consequent increase specifically of white spruce (Picea glauca (Moench) Voss) from 1.5% to 6.7% of all trees. Ponderosa pine currently is smaller in mean diameter by 7.4 cm, while white spruce is larger in mean diameter by 2.4 cm than historically. When the 35% of historical survey points without recorded trees were excluded, historical tree densities indicated an overall forested structure of savannas and open woodlands with tree densities ranging from 66 trees ha–1 to 162 trees ha–1. However, historical forests of the Black Hills incorporated dense stands. Tree densities have increased two- to more than four-fold, to 311 trees ha–1 currently. These comparisons provide another source of information, paralleling changes documented in surface fire-dependent pine and oak forests throughout the United States, of transitions in forest composition and structure since Euro-American settlement
Reviewing Fire, Climate, Deer, and Foundation Species as Drivers of Historically Open Oak and Pine Forests and Transition to Closed Forests
Historically open oak and pine savannas and woodlands have transitioned to closed forests comprised of increased numbers of tree species throughout the eastern United States. We reviewed evidence for and against a suite of previously postulated drivers of forest transition focused on (1) change in fire regimes, (2) increased precipitation, (3) increased white-tailed deer densities, and (4) loss of American chestnut. We found that fire and fire exclusion provide a parsimonious mechanism for historical dominance by open forests of fire-tolerant oak and/or pine species and subsequent transition to closed forests with fire-sensitive tree species that fill the vertical profile. Based on statistical tests, increased precipitation during the past century was within historical ranges and thus fails to provide an explanation for forest change; additionally, precipitation variability is incongruent with tree traits (i.e., both drought-tolerant and drought-intolerant species have increased and decreased) and patterns of tree establishment. Similarly, current deer densities fail to provide a statistical relationship to explain tree densities at regional scales, species trends are unrelated to deer browse preferences, and both historically open forests and contemporary closed forests contained high deer densities. Functional extinction of the American chestnut had localized impacts but chestnut was not abundant compared to oak or widespread enough in distribution to match forest transitions throughout the eastern United States. Although Euro-American settlement affected many processes, not all changes were consistent enough to cause transitions in forest composition and structure that generally trailed westward expansion by Euro-American settlers. Evidence about these drivers continues to mount and we recognize the need for further research and continual re-evaluation of drivers of historical forests and forest change due to importance for understanding and management of these ecosystems
Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach
Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics
Importance of succession, harvest, and climate change in determining future composition in U.S. Central Hardwood Forests
Most temperate forests in U.S. are recovering from heavy exploitation and are in intermediate successional stages where partial tree harvest is the primary disturbance. Changes in regional forest composition in response to climate change are often predicted for plant functional types using biophysical process models. These models usually simplify the simulation of succession and harvest and may not consider important species-specific demographic processes driving forests changes. We determined the relative importance of succession, harvest, and climate change to forest composition changes in a 125-million ha area of the Central Hardwood Forest Region of U.S. We used a forest landscape modeling approach to project changes in density and basal area of 23 tree species due to succession, harvest, and four climate scenarios from 2000 to 2300. On average, succession, harvest, and climate change explained 78, 17, and 1% of the variation in species importance values (IV) at 2050, respectively, but their contribution changed to 46, 26, and 20% by 2300. Climate change led to substantial increases in the importance of red maple and southern species (e.g., yellow-poplar) and decreases in northern species (e.g., sugar maple) and most of widely distributed species (e.g., white oak). Harvest interacted with climate change and accelerated changes in some species (e.g., increasing southern red oak and decreasing American beech) while ameliorated the changes for others (e.g., increasing red maple and decreasing white ash). Succession was the primary driver of forest composition change over the next 300 years. The effects of harvest on composition were more important than climate change in the short term but climate change became more important than harvest in the long term. Our results show that it is important to model species-specific responses when predicting changes in forest composition and structure in response to succession, harvest, and climate change
Importance of succession, harvest, and climate change in determining future composition in U.S. Central Hardwood Forests
Most temperate forests in U.S. are recovering from heavy exploitation and are in intermediate successional stages where partial tree harvest is the primary disturbance. Changes in regional forest composition in response to climate change are often predicted for plant functional types using biophysical process models. These models usually simplify the simulation of succession and harvest and may not consider important species-specific demographic processes driving forests changes. We determined the relative importance of succession, harvest, and climate change to forest composition changes in a 125-million ha area of the Central Hardwood Forest Region of U.S. We used a forest landscape modeling approach to project changes in density and basal area of 23 tree species due to succession, harvest, and four climate scenarios from 2000 to 2300. On average, succession, harvest, and climate change explained 78, 17, and 1% of the variation in species importance values (IV) at 2050, respectively, but their contribution changed to 46, 26, and 20% by 2300. Climate change led to substantial increases in the importance of red maple and southern species (e.g., yellow-poplar) and decreases in northern species (e.g., sugar maple) and most of widely distributed species (e.g., white oak). Harvest interacted with climate change and accelerated changes in some species (e.g., increasing southern red oak and decreasing American beech) while ameliorated the changes for others (e.g., increasing red maple and decreasing white ash). Succession was the primary driver of forest composition change over the next 300 years. The effects of harvest on composition were more important than climate change in the short term but climate change became more important than harvest in the long term. Our results show that it is important to model species-specific responses when predicting changes in forest composition and structure in response to succession, harvest, and climate change
- …
