75 research outputs found

    Mathematical models for immunology:current state of the art and future research directions

    Get PDF
    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years

    Methods of nutrition surveillance in low-income countries

    Get PDF
    Background In 1974 a joint FAO/UNICEF/WHO Expert Committee met to develop methods for nutrition surveillance. There has been much interest and activity in this topic since then, however there is a lack of guidance for practitioners and confusion exists around the terminology of nutrition surveillance. In this paper we propose a classification of data collection activities, consider the technical issues for each category, and examine the potential applications and challenges related to information and communication technology. Analysis There are three major approaches used to collect primary data for nutrition surveillance: repeated cross-sectional surveys; community-based sentinel monitoring; and the collection of data in schools. There are three major sources of secondary data for surveillance: from feeding centres, health facilities, and community-based data collection, including mass screening for malnutrition in children. Surveillance systems involving repeated surveys are suitable for monitoring and comparing national trends and for planning and policy development. To plan at a local level, surveys at district level or in programme implementation areas are ideal, but given the usually high cost of primary data collection, data obtained from health systems are more appropriate provided they are interpreted with caution and with contextual information. For early warning, data from health systems and sentinel site assessments may be valuable, if consistent in their methods of collection and any systematic bias is deemed to be steady. For evaluation purposes, surveillance systems can only give plausible evidence of whether a programme is effective. However the implementation of programmes can be monitored as long as data are collected on process indicators such as access to, and use of, services. Surveillance systems also have an important role to provide information that can be used for advocacy and for promoting accountability for actions or lack of actions, including service delivery. Conclusion This paper identifies issues that affect the collection of nutrition surveillance data, and proposes definitions of terms to differentiate between diverse sources of data of variable accuracy and validity. Increased interest in nutrition globally has resulted in high level commitments to reduce and prevent undernutrition. This review helps to address the need for accurate and regular data to convert these commitments into practice

    Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    Get PDF
    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β and -γ, lung (i.e. pulmonary) cells and Natural Killer cells. We use recent results from experimentally infected chickens to validate some of the model predictions. The model includes an initial exponential increase of the viral load, which we show to be consistent with experimental data. Using this exponential growth model we show that the duration until a given viral load is reached in experiments with different inoculation doses is consistent with a model assuming a linear relationship between initial viral load and inoculation dose. Subsequent to the exponential-growth phase, the model results show a decline in viral load caused by both target-cell limitation as well as the innate immune response. The model results suggest that the temporal viral load pattern in the lungs displayed in experimental data cannot be explained by target-cell limitation alone. For biologically plausible parameter values the model is able to qualitatively match to data on viral load in chicken lungs up until approximately 4 days post infection. Comparison of model predictions with data on CD107-mediated degranulation of Natural Killer cells yields some discrepancy also for earlier days post infection

    A Mathematical Model of Mitotic Exit in Budding Yeast: The Role of Polo Kinase

    Get PDF
    Cell cycle progression in eukaryotes is regulated by periodic activation and inactivation of a family of cyclin–dependent kinases (Cdk's). Entry into mitosis requires phosphorylation of many proteins targeted by mitotic Cdk, and exit from mitosis requires proteolysis of mitotic cyclins and dephosphorylation of their targeted proteins. Mitotic exit in budding yeast is known to involve the interplay of mitotic kinases (Cdk and Polo kinases) and phosphatases (Cdc55/PP2A and Cdc14), as well as the action of the anaphase promoting complex (APC) in degrading specific proteins in anaphase and telophase. To understand the intricacies of this mechanism, we propose a mathematical model for the molecular events during mitotic exit in budding yeast. The model captures the dynamics of this network in wild-type yeast cells and 110 mutant strains. The model clarifies the roles of Polo-like kinase (Cdc5) in the Cdc14 early anaphase release pathway and in the G-protein regulated mitotic exit network

    Influenza Infectious Dose May Explain the High Mortality of the Second and Third Wave of 1918–1919 Influenza Pandemic

    Get PDF
    BACKGROUND: It is widely accepted that the shift in case-fatality rate between waves during the 1918 influenza pandemic was due to a genetic change in the virus. In animal models, the infectious dose of influenza A virus was associated to the severity of disease which lead us to propose a new hypothesis. We propose that the increase in the case-fatality rate can be explained by the dynamics of disease and by a dose-dependent response mediated by the number of simultaneous contacts a susceptible person has with infectious ones. METHODS: We used a compartment model with seasonality, waning of immunity and a Holling type II function, to model simultaneous contacts between a susceptible person and infectious ones. In the model, infected persons having mild or severe illness depend both on the proportion of infectious persons in the population and on the level of simultaneous contacts between a susceptible and infectious persons. We further allowed for a high or low rate of waning immunity and volunteer isolation at different times of the epidemic. RESULTS: In all scenarios, case-fatality rate was low during the first wave (Spring) due to a decrease in the effective reproduction number. The case-fatality rate in the second wave (Autumn) depended on the ratio between the number of severe cases to the number of mild cases since, for each 1000 mild infections only 4 deaths occurred whereas for 1000 severe infections there were 20 deaths. A third wave (late Winter) was dependent on the rate for waning immunity or on the introduction of new susceptible persons in the community. If a group of persons became voluntarily isolated and returned to the community some days latter, new waves occurred. For a fixed number of infected persons the overall case-fatality rate decreased as the number of waves increased. This is explained by the lower proportion of infectious individuals in each wave that prevented an increase in the number of severe infections and thus of the case-fatality rate. CONCLUSION: The increase on the proportion of infectious persons as a proxy for the increase of the infectious dose a susceptible person is exposed, as the epidemic develops, can explain the shift in case-fatality rate between waves during the 1918 influenza pandemic.TD acknowledges the support of the Faculdade de Ciencias e Tecnologia through grant PPCDT/AMB/55701/2004. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses

    Get PDF
    Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection

    Socioeconomic Inequalities in Newborn Care During Facility and Home Deliveries: A Cross Sectional Analysis of Data from Demographic Surveillance Sites in Rural Bangladesh, India and Nepal

    Get PDF
    Background: In Bangladesh, India and Nepal, neonatal outcomes of poor infants are considerably worse than those of better-off infants. Understanding how these inequalities vary by country and place of delivery (home or facility) will allow targeting of interventions to those who need them most. We describe socio-economic inequalities in newborn care in rural areas of Bangladesh, Nepal and India for all deliveries and by place of delivery. Methods: We used data from surveillance sites in Bangladesh, India and from Makwanpur and Dhanusha districts in Nepal, covering periods from 2001 to 2011. We used literacy (ability to read a short text) as indicator of socioeconomic status. We developed a composite score of nine newborn care practices (score range 0–9 indicating infants received no newborn care to all nine newborn care practices). We modeled the effect of literacy and place of delivery on the newborn care score and on individual practices. Results: In all study sites (60,078 deliveries in total), use of facility delivery was higher among literate mothers. In all sites, inequalities in newborn care were observed: the difference in new born care between literate and illiterate ranged 0.35–0.80. The effect of literacy on the newborn care score reduced after adjusting for place of delivery (range score difference literate-illiterate: 0.21–0.43). Conclusion: Socioeconomic inequalities in facility care greatly contribute to inequalities in newborn care. Improving newborn care during home deliveries and improving access to facility care are a priority for addressing inequalities in newborn care and newborn mortality

    Translational Systems Biology of Inflammation

    Get PDF
    Inflammation is a complex, multi-scale biologic response to stress that is also required for repair and regeneration after injury. Despite the repository of detailed data about the cellular and molecular processes involved in inflammation, including some understanding of its pathophysiology, little progress has been made in treating the severe inflammatory syndrome of sepsis. To address the gap between basic science knowledge and therapy for sepsis, a community of biologists and physicians is using systems biology approaches in hopes of yielding basic insights into the biology of inflammation. “Systems biology” is a discipline that combines experimental discovery with mathematical modeling to aid in the understanding of the dynamic global organization and function of a biologic system (cell to organ to organism). We propose the term translational systems biology for the application of similar tools and engineering principles to biologic systems with the primary goal of optimizing clinical practice. We describe the efforts to use translational systems biology to develop an integrated framework to gain insight into the problem of acute inflammation. Progress in understanding inflammation using translational systems biology tools highlights the promise of this multidisciplinary field. Future advances in understanding complex medical problems are highly dependent on methodological advances and integration of the computational systems biology community with biologists and clinicians

    Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency

    Get PDF

    Prevalence of chronic cough, its risk factors and population attributable risk in the Burden of Obstructive Lung Disease (BOLD) study: a multinational cross-sectional study

    Get PDF
    © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Background: Chronic cough is a common respiratory symptom with an impact on daily activities and quality of life. Global prevalence data are scarce and derive mainly from European and Asian countries and studies with outcomes other than chronic cough. In this study, we aimed to estimate the prevalence of chronic cough across a large number of study sites as well as to identify its main risk factors using a standardised protocol and definition. Methods: We analysed cross-sectional data from 33,983 adults (≥40 years), recruited between Jan 2, 2003 and Dec 26, 2016, in 41 sites (34 countries) from the Burden of Obstructive Lung Disease (BOLD) study. We estimated the prevalence of chronic cough for each site accounting for sampling design. To identify risk factors, we conducted multivariable logistic regression analysis within each site and then pooled estimates using random-effects meta-analysis. We also calculated the population attributable risk (PAR) associated with each of the identifed risk factors. Findings: The prevalence of chronic cough varied from 3% in India (rural Pune) to 24% in the United States of America (Lexington,KY). Chronic cough was more common among females, both current and passive smokers, those working in a dusty job, those with a history of tuberculosis, those who were obese, those with a low level of education and those with hypertension or airflow limitation. The most influential risk factors were current smoking and working in a dusty job. Interpretation: Our findings suggested that the prevalence of chronic cough varies widely across sites in different world regions. Cigarette smoking and exposure to dust in the workplace are its major risk factors.info:eu-repo/semantics/publishedVersio
    corecore