5,325 research outputs found

    Orientation of particle attachment and local isotropy in diffusion limited aggregation (DLA)

    Full text link
    We simulate 50 off-lattice DLA clusters, one million particles each. The probability distribution of the angle of attachment of arriving particles with respect to the local radial direction is obtained numerically. For increasing cluster size, NN, the distribution crosses over extremely accurately to a cosine, whose amplitude decreases towards zero as a power-law in NN. From this viewpoint, asymptotically large DLA clusters are locally isotropicisotropic. This contradicts previous conclusions drawn from density-density correlation measurements [P. Meakin, and T. Viscek, Phys. Rev. A {\bf 32}, 685 (1985)]. We present an intuitive phenomenological model random process for our numerical findings.Comment: 10 pages, RevTex 3.0, 11-9

    Phase-Remapping Attack in Practical Quantum Key Distribution Systems

    Full text link
    Quantum key distribution (QKD) can be used to generate secret keys between two distant parties. Even though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power, practical implementations of QKD may contain loopholes that may lead to the generated secret keys being compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD systems (the "plug & play" system and the Sagnac system). We showed that if the users of the systems are unaware of our attack, the final key shared between them can be compromised in some situations. Specifically, we showed that, in the case of the Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders the final key insecure, whereas the same range of QBER values has been proved secure if the two users are unaware of our attack; also, we demonstrated three situations with realistic devices where positive key rates are obtained without the consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible with only current technology. Therefore, it is very important to be aware of our attack in order to ensure absolute security. In finding our attack, we minimize the QBER over individual measurements described by a general POVM, which has some similarity with the standard quantum state discrimination problem.Comment: 13 pages, 8 figure

    The impact of high speed machining on computing and automation

    Get PDF
    Machine tool technologies, especially Computer Numerical Control (CNC) High Speed Machining (HSM) have emerged as effective mechanisms for Rapid Tooling and Manufacturing applications. These new technologies are attractive for competitive manufacturing because of their technical advantages, i.e. a significant reduction in lead-time, high product accuracy, and good surface finish. However, HSM not only stimulates advancements in cutting tools and materials, it also demands increasingly sophisticated CAD/CAM software, and powerful CNC controllers that require more support technologies. This paper explores the computational requirement and impact of HSM on CNC controller, wear detection, look ahead programming, simulation, and tool management

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure

    Electric-field control of magnetic ordering in the tetragonal BiFeO3

    Full text link
    We propose a way to use electric-field to control the magnetic ordering of the tetragonal BiFeO3. Based on systematic first-principles studies of the epitaxial strain effect on the ferroelectric and magnetic properties of the tetragonal BiFeO3, we find that there exists a transition from C-type to G-type antiferromagnetic (AFM) phase at in-plane constant a ~ 3.905 {\AA} when the ferroelectric polarization is along [001] direction. Such magnetic phase transition can be explained by the competition between the Heisenberg exchange constant J1c and J2c under the influence of biaxial strain. Interestingly, when the in-plane lattice constant enlarges, the preferred ferroelectric polarization tends to be canted and eventually lies in the plane (along [110] direction). It is found that the orientation change of ferroelectric polarization, which can be realized by applying external electric-field, has significant impact on the Heisenberg exchange parameters and therefore the magnetic orderings of tetragonal BiFeO3. For example, at a ~ 3.79 {\AA}, an electric field along [111] direction with magnitude of 2 MV/cm could change the magnetic ordering from C-AFM to G-AFM. As the magnetic ordering affects many physical properties of the magnetic material, e.g. magnetoresistance, we expect such strategy would provide a new avenue to the application of multiferroic materials.Comment: 4 pages, 4 figure

    Residential Water Consumption: A Cross Country Analysis

    Get PDF
    Survey data from over 1,600 households in ten countries were used to analyse the determinants of residential water demand. Results show that in every country the price elasticity is negative and statistically significant. Households that do not have to pay for the water they use (volumetric water charges) consume about a third more water than similar households that do have to pay such charges. Consumers’ attitudes do not have a statistically significant effect on total water use, although they do increase the probability of households using some water saving behaviours. Volumetric water charges also have an impact on the adoption of water saving actions. Full-cost water pricing appears to be a highly effective instrument to manage residential water demand.water demand, water consumption, water pricing, Environmental Economics and Policy, Resource /Energy Economics and Policy, C21, Q25, Q50,

    A review of the application of acoustic emission technique in engineering

    Get PDF
    The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering

    3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Get PDF
    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or neutral pions from protons.Comment: 12 pages, 9 figures, accepted by Apj, 24 June 200

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed
    corecore