2,293 research outputs found
Adding Value to Milk through the Production of Cheese and Other Dairy Products on the Farm in The Netherlands
Farm Management,
Variation in the thickness of a fluid interface due to internal wave propagation:a lattice Boltzmann simulation
The change in the thickness of an interface between two immiscible fluids due to the propagation of an internal capillary-gravity wave along the interface is considered using a Bhatnagar, Gross and Krook (BGK) lattice Boltzmann model of a binary of fluid. The vertical thickness of the interface is recorded from the simulations since this is the most easily measured quantities in any simulation or experiment. The vertical thickness is then related to the actual thickness (perpendicular to the interface) which is seen to vary with the phase of the wave. The positions of the maxima and minimum thicknesses are seen to be approximately constant relative to the phase of the propagating wave and the range of variation of the thickness decreases at approximately the same rate as the wave amplitude is damped. A simplified model for the interface is considered which predicts a similar variation due to the interface being stretched as the internal wave propagates
Application of high speed filming techniques to the study of rearwards melt ejection in laser drilling
Melt ejection is the dominant material removal mechanism in long, ms, pulse laser drilling of metals, a process with applications such as the drilling of cooling holes in turbine blades. Droplets of molten material are ejected through the entrance hole and, after breakthrough, through the exit hole. High speed filming is used to study the ejected material in order to better understand how this debris may interact with material in the immediate vicinity of the drilled hole. Existing studies have quantified various aspects of melt ejection, however they usually focus on ejection through the entrance hole. This work concentrates on rear melt ejection and is relevant to issues such as rear wall impingement. A 2kW IPG 200S fibre laser is used to drill mild steel. High speed filming is combined with image analysis to characterise the rearward-ejected material. Particle size and velocity data is presented as a function of drilling parameters. It is concluded that high speed filming combined with image analysis and proper consideration of process limitations and optimisation strategies can be a powerful tool in understanding resultant debris distributions
A power electronic controlled dump load with negligible harmonics for accurate loading used in testing small wind turbines
Permanent magnet synchronous generators (PMSG) are at the core of small scale wind power generators manufactured by a wide range of manufacturers in different configurations: vertical or horizontal axis blades, with various geometries and aerodynamics of the blades; by installing these small scale wind turbines in very large numbers at household levels, it is expected that these will make a positive contribution to the increase of renewable energy generation, reducing the use of fossil fuels that are blamed for climate change. However, a proper evaluation of the technical specification of these small scale wind generators in various weather conditions is necessary in order to assess the full potential of benefits. This paper reports on the implementation and testing of a power electronic dump load that allows continuously adjustable loading of a PMSG with sinusoidal currents and have the capability to self synchronize to its frequency/speed whilst avoiding transient/loosing of synchronism
Recommended from our members
Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non-small-cell lung cancer treated with stereotactic body radiation therapy.
Background and purposeChest wall toxicity is observed after stereotactic body radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine learning algorithms to identify toxicity predictors to develop dose-volume constraints.Materials and methodsTwenty-five patient, tumor, and dosimetric features were recorded for 197 consecutive patients with Stage I NSCLC treated with SBRT, 11 of whom (5.6%) developed CTCAEv4 grade ≥2 chest wall pain. Decision tree modeling was used to determine chest wall syndrome (CWS) thresholds for individual features. Significant features were determined using independent multivariate methods. These methods incorporate out-of-bag estimation using Random forests (RF) and bootstrapping (100 iterations) using decision trees.ResultsUnivariate analysis identified rib dose to 1 cc < 4000 cGy (P = 0.01), chest wall dose to 30 cc < 1900 cGy (P = 0.035), rib Dmax < 5100 cGy (P = 0.05) and lung dose to 1000 cc < 70 cGy (P = 0.039) to be statistically significant thresholds for avoiding CWS. Subsequent multivariate analysis confirmed the importance of rib dose to 1 cc, chest wall dose to 30 cc, and rib Dmax. Using learning-curve experiments, the dataset proved to be self-consistent and provides a realistic model for CWS analysis.ConclusionsUsing machine learning algorithms in this first of its kind study, we identify robust features and cutoffs predictive for the rare clinical event of CWS. Additional data in planned subsequent multicenter studies will help increase the accuracy of multivariate analysis
Design and development of a low-cost, electricity-generating cooking Score-Stove™
SCORE (www.score.uk.com) a US120 with 20 Watts of electricity 60 million people would afford the stove. At the lower-cost target of $40 and 100 Watts it would be affordable to over 1 billion people. In November 2010, a wood burning Score-Stove™ prototype successfully developed 23 watts of electricity based on a planar Thermo-Acoustic Engine (TAE) [2],[3],[4],[5],[6] design, indicating that the new Score-Stove™ is now ready to be engaged with manufacturers to gear up for volume production, and therefore to meet the social and cooking requirements of the rural poor people. The development to a large-volume, easy to manufacture, low-cost TAE cooking stove using elements of the formal design methodologies of BS 7000 and TRIZ are discussed. By breaking down the system requirements into cost targets for each module, performing rig testing, and design refinements it is believed that the upper-cost target is achievable with the right level of investment
Investigation of model validity for numerical survivability testing of WECs
This paper investigates the applicability of two numerical models to assess the survivability of Wave Energy Converters (WECs). Simulations using both a fully nonlinear Navier-Stokes solver (based on OpenFOAM) and WaveDyn (a linear time-domain model for multi-body interactions) are compared with physical experiments involving a free-floating buoy with a single mooring line. Events in which survivability is a concern are modelled using the focus wave-group NewWave. Two wave-groups (one steeper than the other) are used to identify the validity of each numerical model as a function of wave steepness. By taking into account the CPU cost and model validity, the range of applicability for both models is discussed. This constitutes the first step in future work: coupling the two numerical models to form an efficient modelling tool that benefits from the computational efficiency of WaveDyn while including the fidelity of a Navier-Stokes solver when required; therefore providing valuable information for WEC developers
Pecunia non olet but does rose money smell?: on rose oil prices and moral economy in Isparta, Turkey
Improving trial recruitment through improved communication about patient and public involvement : an embedded cluster randomised recruitment trial
Background: Evidence is emerging that patient and public involvement in research (PPIR) may improve recruitment into randomised controlled trials, but the best methods to achieve improvement are unclear. Although many trials use PPIR to improve design and conduct, many do not communicate their use of PPIR clearly to potential participants. Directly communicating PPIR might encourage participation through increased patient confidence and trust in a trial. We aimed to develop and evaluate the impact on recruitment an intervention communicating PPIR in a trial to potential participants. Methods: This study was embedded in EQUIP, a cluster randomised controlled trial which allocated mental health teams in England to either a training intervention group to improve service user and carer involvement in care planning, or to a control group (no training). We conducted a cluster randomised trial of a recruitment intervention communicating PPIR, embedded within the EQUIP trial. The principles underlying the intervention were informed by a systematic review and a workshop that included mental health service users and trialists. Working with EQUIP PPIR partners (service users and carers) we developed the intervention using a leaflet to advertise the nature and function of the PPIR. Professional graphic design optimised readability and impact. Patients identified as potentially eligible for EQUIP were randomised to receive the leaflet or not, alongside the standard trial information. The primary outcome was the proportion of participants enrolled in EQUIP. The secondary outcome was the proportion expressing interest in taking part. Results: 34 clusters (mental health teams) were recruited, and 8182 potential participants were randomised. Preliminary analyses show that for the primary outcome, 4% of patients receiving the PPIR leaflet were enrolled vs. 5.3% in the control group. For the secondary outcome 7.3% of potential participants receiving the PPIR leaflet responded positively to the invitation to participate, vs. 7.9% in the control group. Future analyses will be by intention-to-treat and use logistic regression to estimate between-group odds ratios (ORs) and corresponding 95% confidence intervals. A planned secondary analysis will explore whether the impact of the intervention is moderated by age and gender. Conclusion: In preliminary analysis of this large trial, communicating PPIR demonstrated no benefits for improving the numbers of potential participants expressing interest in the trial, and reduced trial enrolment. Our findings contrast with the literature suggesting PPIR benefits recruitment. We will discuss the potential reasons for this finding, along with implications for future recruitment practice and research
Mathematically gifted and talented learners: Theory and practice
This is an Author's Accepted Manuscript of an article published in International Journal of Mathematical Education in Science and Technology, 40(2), 213-228, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/00207390802566907.There is growing recognition of the special needs of mathematically gifted learners. This article reviews policy developments and current research and theory on giftedness in mathematics. It includes a discussion of the nature of mathematical ability as well as the factors that make up giftedness in mathematics. The article is set in the context of current developments in Mathematics Education and Gifted Education in the UK and their implications for Science and Technology. It argues that early identification and appropriate provision for younger mathematically promising pupils capitalizes on an intellectual resource which could provide future mathematicans as well as specialists in Science or Technology. Drawing on a Vygotskian framework, it is suggested that the mathematically gifted require appropriate cognitive challenges as well as attitudinally and motivationally enhancing experiences. In the second half of this article we report on an initiative in which we worked with teachers to identify mathematically gifted pupils and to provide effective enrichment support for them, in a number of London Local Authorities. A number of significant issues are raised relating to the identification of mathematical talent, enrichment provision for students and teachers’ professional development
- …
