205 research outputs found
A novel isolator-based system promotes viability of human embryos during laboratory processing
In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations
Children's play space and safety management: rethinking the role of play equipment standards
The provision of stimulating and engaging play space for children and young people is increasingly recognized as an important societal goal, not the least because it provides the young with opportunities to develop and gain experience in experimenting with risk. Research in several disciplines now suggests that achievement of this goal has however been impeded in recent decades, and reasons commonly cited have included fear of injury and avoidance of litigation. International standards on play equipment have also been promulgated and justified in terms of securing young people’s “safety,” most usually narrowly defined as injury reduction. There appears to be a widespread presumption that measures aimed at injury prevention are necessarily beneficial overall for young people’s welfare. In this article, we subject European standards for play equipment and surfacing to scrutiny. In particular, we examine underlying motives, consistency of purpose, use of evidence, philosophical leanings, scope, practicalities of application, systems of management, and legal ramifications. From this, we identify a number of fundamental issues that suggest that as a consequence of compartmentalized thinking and misunderstandings, these standards have invaded areas of decision making beyond their legitimate territory. The consequence of this is that play provision is skewed away from what are properly play provision objectives. In such circumstances, local decision makers are often disempowered, and their ability to provide optimal play spaces thereby circumscribed
Avoiding a dystopian future for children's play
Describes the conflict between children's freedom to play and the quest for safety and makes recommendations for the future
Understanding mechanisms of asphaltene adsorption from organic solvent on mica
The adsorption process of asphaltene onto molecularly smooth mica surfaces from toluene solutions of various concentrations (0.01-1 wt %) was studied using a surface forces apparatus (SFA). Adsorption of asphaltenes onto mica was found to be highly dependent on adsorption time and asphaltene concentration of the solution. The adsorption of asphaltenes led to an attractive bridging force between the mica surfaces in asphaltene solution. The adsorption process was identified as being controlled by the diffusion of asphaltenes from the bulk solution to the mica surface with a diffusion coefficient on the order of 10-10 m2/s at room temperature, depending on the asphaltene bulk concentration. This diffusion coefficient corresponds to a hydrodynamic molecular radius of approximately 0.5 nm, indicating that asphaltene diffuses to mica surfaces as individual molecules at very low concentration (e.g., 0.01 wt %). Atomic force microscopy images of the adsorbed asphaltenes on mica support the results of the SFA force measurements. The results from the SFA force measurements provide valuable insights into the molecular interactions (e.g., steric repulsion and bridging attraction as a function of distance) of asphaltenes in organic media and hence their roles in crude oil and bitumen production
Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide-propylene oxide demulsifier
The demulsification mechanism of asphaltene-stabilized water-in-toluene emulsions by an ethylene-oxide-propylene oxide (EO-PO) based polymeric demulsifier was studied. Demulsification efficiency was determined by bottle tests and correlated to the physicochemical properties of asphaltene interfacial films after demulsifier addition. From bottle tests and droplet coalescence experiments, the demulsifier showed an optimal performance at 2.3 ppm (mass basis) in toluene. At high concentrations, the demulsification performance deteriorated due to the intrinsic stabilizing capacity of the demulsifier, which was attributed to steric repulsion between water droplets. Addition of demulsifier was shown to soften the asphaltene film (i.e., reduce the viscoelastic moduli of asphaltene films) under both shear and compressional interfacial deformations. Study of the macrostructures and the chemical composition of asphaltene film at the toluene-water interface after demulsifier addition demonstrated gradual penetration of the demulsifier into the asphaltene film. Demulsifier penetration in the asphaltene film changed the asphaltene interfacial mobility and morphology, as probed with Brewster angle and atomic force microscopy
Role of Caustic Addition in Bitumen-Clay Interactions
Coating of bitumen by clays, known as slime coating, is detrimental to bitumen recovery from oil sands using the warm slurry extn. process. Sodium hydroxide (caustic) is added to the extn. process to balance many competing processing challenges, which include undesirable slime coating. The current research aims at understanding the role of caustic addn. in controlling interactions of bitumen with various types of model clays. The interaction potential was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). After confirming the slime coating potential of montmorillonite clays on bitumen in the presence of calcium ions, the interaction of kaolinite and illite with bitumen was studied. To represent more closely the industrial applications, tailings water from bitumen extn. tests at different caustic dosage was used. At caustic dosage up to 0.5 wt % oil sands ore, a negligible coating of kaolinite on the bitumen was detd. However, at a lower level of caustic addn., illite was shown to attach to the bitumen, with the interaction potential decreasing with increasing caustic dosage. Increasing concn. of humic acids as a result of increasing caustic dosage was identified to limit the interaction potential of illite with bitumen. This fundamental study clearly shows that the crit. role of caustics in modulating interactions of clays with bitumen depends upon the type of clays. Thus, clay type was identified as a key operational variable
Problematic Stabilizing Films in Petroleum Emulsions: Shear Rheological Response of Viscoelastic Asphaltene Films and the Effect on Drop Coalescence
Adsorption of asphaltenes at the water-oil interface contributes to the stability of petroleum emulsions by forming a networked film that can hinder drop-drop coalescence. The interfacial microstructure can either be liquid-like or solid-like, depending on (i) initial bulk concentration of asphaltenes, (ii) interfacial aging time, and (iii) solvent aromaticity. Two techniques--interfacial shear rheology and integrated thin film drainage apparatus--provided equivalent interface aging conditions, enabling direct correlation of the interfacial rheology and droplet stability. The shear rheological properties of the asphaltene film were found to be critical to the stability of contacting drops. With a viscous dominant interfacial microstructure, the coalescence time for two drops in intimate contact was rapid, on the order of seconds. However, as the elastic contribution develops and the film microstructure begins to be dominated by elasticity, the two drops in contact do not coalescence. Such step-change transition in coalescence is thought to be related to the high shear yield stress (~10(4) Pa), which is a function of the film shear yield point and the film thickness (as measured by quartz crystal microbalance), and the increased elastic stiffness of the film that prevents mobility and rupture of the asphaltene film, which when in a solid-like state provides an energy barrier against drop coalescence
Acoustic Method for Determination of the Thermal Properties of Nanofluids
This study determines the thermophysical properties of nanofluids using ultrasonic techniques. Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, dp = 50 nm) are made at volume fractions from 1 to 5 vol % over the temperature range of 20−90 °C. The observed relationships between the measured parameters and speed of sound variation are presented. Available theoretical approaches are reviewed and applied to the data of the study. The speed of sound data together with measurements of density and predictions of thermal conductivity, derived from Lagrangian particle tracking (LPT) simulations, is used to determine the ratio of specific heats of nanofluids using a modified version of the Bridgman equation. The results demonstrate the effectiveness of the measurement technique, with outcomes elucidating the dependence of the speed of sound on temperature and particle concentration, and hence the influence of these parameters on the thermophysical properties of nanofluids. Using the speed of sound approach and LPT simulations, the predicted thermal values, which have an estimated accuracy of 5−10%, show good agreement with theoretical and experimental results available in the literature for similar operating conditions. This research forms the basis for the use of novel acoustic techniques for online, in situ measurement of nanofluids, and their potential applications in solar thermal power systems
Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)
We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700-1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples
A chemically tailored capacitive deionization system for the enhanced removal of cesium from process water
A capacitive deionization (CDI) electrode comprising ethylenediamine triacetic acid (EDTA) and 2D MXene (EDTA-MXene) is fabricated to separate Cs+ from strongly acidic process water. The method provides new direction for an advanced aqueous recycle process to separate fission products from spent fuel liquor. Grafting EDTA on MXene has no detrimental effect on its structure but does diversify the modes of ion interaction and increase the number of binding sites. The composite CDI electrode has a Cs+ adsorption capacity of 2.07 mmol g−1 at 1.2 V with 97.3% removal efficiency within 15 min. Step-wise adsorption and desorption cycling of the electrode highlights the chemisorption effect of EDTA which immobilizes the ions as the applied voltage is lowered, although almost all ions can be stripped by reversing the voltage to −1.4 V and without the need for chemical treatment. The EDTA-MXene electrode demonstrates outstanding cyclic performance with a capacity retention of >80% after 320 cycles. Furthermore, the electrode maintains its performance in strongly acidic solution, removing 0.66 mmol g−1 Cs+ at 1.2 V, as well as being stable after immersing in 3 mol L−1 HNO3 for 7 days. Through continuous cycling it is possible to enrich the Cs+ into a highly concentrated solution for element recovery or safe disposal. The EDTA-MXene material is robust and maintains good performance in harsh chemical environments, levering its multiple binding sites to successfully isolate Cs+ from strongly acidic solutions and in the presence of competing ions, Sr2+ and Ce(IV)
- …
